• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integrais] Dúvida exercício

[Integrais] Dúvida exercício

Mensagempor MrJuniorFerr » Dom Nov 11, 2012 10:51

Bom dia!
Estou com dúvida no seguinte exercício:

\int e^xsenx dx

Está na cara que não é possível integrar pelo método de substituição, por isto, tentei pelo método por partes e não deu certo porque a derivada e integral de e^x é e^x e eu não consigo achar um integrando possível. Como resolver?
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Dúvida exercício

Mensagempor CaptainObvious » Dom Nov 11, 2012 12:31

Olá MrJuniorFerr!

Para resolver essa integral, faça por partes utilizando as seguintes substituições:

Primeira:

u = sin(x)
dv = e^x

Segunda:

u = cos(x)
dv = e^x

Depois disso, você encontrará a resposta. Se ainda assim tiver dúvidas, é só falar!
CaptainObvious
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sex Ago 17, 2012 21:22
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática Aplicada
Andamento: cursando

Re: [Integrais] Dúvida exercício

Mensagempor DanielFerreira » Dom Nov 11, 2012 12:48

\\ \begin{cases} f(x) = e^x \\ f'(x) = e^x\end{cases} & e & \begin{cases} g'(x) = sen \, x \\ g(x) = - \, cos \, x\end{cases} \\\\\\ \int f(x) \cdot g'(x) \, dx = f(x) \cdot g(x) - \int f'(x) \cdot g(x) \, dx \\\\\\ \int e^x \cdot sen \, x \, dx = e^x \cdot - \, cos \, x - \int e^x \cdot - \, cox \, x \, dx \\\\\\ \int e^x \cdot sen \, x \, dx = - e^x \cdot \, cos \, x + \boxed{\int e^x \cdot cox \, x \, dx}

Como foi dito pelo CaptainObvious, basta calcular a primitiva da integral destacada.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Integrais] Dúvida exercício

Mensagempor MrJuniorFerr » Dom Nov 11, 2012 13:02

Deu certo.
Tinha esquecido da possibilidade de achar o resultado sem integrar o último termo da fórmula do método por partes.
Obrigado CaptainObvious.
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Dúvida exercício

Mensagempor MrJuniorFerr » Dom Nov 11, 2012 13:05

Entendi.
Valeu danjr5.
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Dúvida exercício

Mensagempor DanielFerreira » Dom Nov 11, 2012 13:25

Não há de quê meu caro!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)