• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dada uma função, calcular os zeros

Dada uma função, calcular os zeros

Mensagempor Tixa11 » Sáb Nov 10, 2012 12:26

Dada e função f(x)= log (arcsin (2x-1))=0, como calculo?

Eu chego até à parte arcsin(2x-1)=1 , mas depois não consigo passar daqui.

Alguém me pode ajudar e explicar? Por favor (:
Tixa11
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Sáb Nov 10, 2012 12:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Bioquimica
Andamento: cursando

Re: Dada uma função, calcular os zeros

Mensagempor MarceloFantini » Sáb Nov 10, 2012 13:37

Temos \log (\arcsin (2x-1)) = 0. Isso significa que \arcsin (2x-1) = 1, mas o arco seno está definido em \left[ \frac{-\pi}{2}, \frac{\pi}{2} \right] e logo 2x-1 = \frac{\pi}{2}. Finalmente, x= \frac{ \pi +2}{4}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Dada uma função, calcular os zeros

Mensagempor Tixa11 » Dom Nov 11, 2012 20:07

MarceloFantini escreveu:Temos \log (\arcsin (2x-1)) = 0. Isso significa que \arcsin (2x-1) = 1, mas o arco seno está definido em \left[ \frac{-\pi}{2}, \frac{\pi}{2} \right] e logo 2x-1 = \frac{\pi}{2}. Finalmente, x= \frac{ \pi +2}{4}.



Não percebi muito bem :s
Tixa11
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Sáb Nov 10, 2012 12:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Bioquimica
Andamento: cursando

Re: Dada uma função, calcular os zeros

Mensagempor MarceloFantini » Seg Nov 12, 2012 05:05

O que, exatamente?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Dada uma função, calcular os zeros

Mensagempor Tixa11 » Seg Nov 12, 2012 18:05

MarceloFantini escreveu:O que, exatamente?



Ah, já percebi. Não estava a ver de onde vinha o \frac{\pi}{2}, mas já percebi.

Muito obrigado :D
Tixa11
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Sáb Nov 10, 2012 12:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Bioquimica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.