• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dada uma função, calcular os zeros

Dada uma função, calcular os zeros

Mensagempor Tixa11 » Sáb Nov 10, 2012 12:26

Dada e função f(x)= log (arcsin (2x-1))=0, como calculo?

Eu chego até à parte arcsin(2x-1)=1 , mas depois não consigo passar daqui.

Alguém me pode ajudar e explicar? Por favor (:
Tixa11
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Sáb Nov 10, 2012 12:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Bioquimica
Andamento: cursando

Re: Dada uma função, calcular os zeros

Mensagempor MarceloFantini » Sáb Nov 10, 2012 13:37

Temos \log (\arcsin (2x-1)) = 0. Isso significa que \arcsin (2x-1) = 1, mas o arco seno está definido em \left[ \frac{-\pi}{2}, \frac{\pi}{2} \right] e logo 2x-1 = \frac{\pi}{2}. Finalmente, x= \frac{ \pi +2}{4}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Dada uma função, calcular os zeros

Mensagempor Tixa11 » Dom Nov 11, 2012 20:07

MarceloFantini escreveu:Temos \log (\arcsin (2x-1)) = 0. Isso significa que \arcsin (2x-1) = 1, mas o arco seno está definido em \left[ \frac{-\pi}{2}, \frac{\pi}{2} \right] e logo 2x-1 = \frac{\pi}{2}. Finalmente, x= \frac{ \pi +2}{4}.



Não percebi muito bem :s
Tixa11
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Sáb Nov 10, 2012 12:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Bioquimica
Andamento: cursando

Re: Dada uma função, calcular os zeros

Mensagempor MarceloFantini » Seg Nov 12, 2012 05:05

O que, exatamente?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Dada uma função, calcular os zeros

Mensagempor Tixa11 » Seg Nov 12, 2012 18:05

MarceloFantini escreveu:O que, exatamente?



Ah, já percebi. Não estava a ver de onde vinha o \frac{\pi}{2}, mas já percebi.

Muito obrigado :D
Tixa11
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Sáb Nov 10, 2012 12:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Bioquimica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?