• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada quociente.

Derivada quociente.

Mensagempor Sobreira » Seg Out 29, 2012 16:24

Colegas,
Sei que existem várias dúvidas de derivada quociente no fórum, mas a minha é específica deste exercício.

f`(x)=\frac{4x-7}{{8x}^{3}}

Resolvendo este exercício aplicando o teorema para derivada quociente eu consigo resolver....mas não consigo resolver desta forma:

f`(x)=\frac{4x}{{8x}^{3}}-\frac{7}{{8x}^{3}}

f`(x)=\frac{{4x}^{-2}}{8}}-\frac{{7x}^{-3}}{8}

A partir daí não consigo resolver mais.
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Derivada quociente.

Mensagempor young_jedi » Seg Out 29, 2012 17:27

para

f(x)=\frac{4x^{-2}}{8}-\frac{7x^{-3}}{8}

f'(x)=\frac{4.(-2)x^{-2-1}}{8}-\frac{7.(-3)x^{-3-1}}{8}

simplificando algumas coisas

f'(x)=\frac{-8x^{-3}}{8}+\frac{21x^{-4}}{8}

f'(x)=-\frac{1}{x^3}+\frac{21}{8x^4}

f'(x)=\frac{-8x+21}{8x^4}

comente qualquer coisa
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Derivada quociente.

Mensagempor Sobreira » Seg Out 29, 2012 17:57

No final você tirou o mínimo???
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Derivada quociente.

Mensagempor young_jedi » Seg Out 29, 2012 17:58

exatamente, tirei o minimo multiplo comum
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}