• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada quociente.

Derivada quociente.

Mensagempor Sobreira » Seg Out 29, 2012 16:24

Colegas,
Sei que existem várias dúvidas de derivada quociente no fórum, mas a minha é específica deste exercício.

f`(x)=\frac{4x-7}{{8x}^{3}}

Resolvendo este exercício aplicando o teorema para derivada quociente eu consigo resolver....mas não consigo resolver desta forma:

f`(x)=\frac{4x}{{8x}^{3}}-\frac{7}{{8x}^{3}}

f`(x)=\frac{{4x}^{-2}}{8}}-\frac{{7x}^{-3}}{8}

A partir daí não consigo resolver mais.
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Derivada quociente.

Mensagempor young_jedi » Seg Out 29, 2012 17:27

para

f(x)=\frac{4x^{-2}}{8}-\frac{7x^{-3}}{8}

f'(x)=\frac{4.(-2)x^{-2-1}}{8}-\frac{7.(-3)x^{-3-1}}{8}

simplificando algumas coisas

f'(x)=\frac{-8x^{-3}}{8}+\frac{21x^{-4}}{8}

f'(x)=-\frac{1}{x^3}+\frac{21}{8x^4}

f'(x)=\frac{-8x+21}{8x^4}

comente qualquer coisa
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Derivada quociente.

Mensagempor Sobreira » Seg Out 29, 2012 17:57

No final você tirou o mínimo???
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Derivada quociente.

Mensagempor young_jedi » Seg Out 29, 2012 17:58

exatamente, tirei o minimo multiplo comum
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: