• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Transformações

Transformações

Mensagempor manuela » Seg Out 29, 2012 17:30

Preciso identificar, as 3 transformações geométricas que resultaram na transformação linear da imagem abaixo, além da matriz canônica da composição e o produto das matrizes canônicas das transformações aplicadas. Lembrando que a transformação inicial forma um quadrado de vértices (0,0), (2,0), (2,2), (0,2)

Identifiquei um cisalhamento que suponho ser de fator 2 e uma transformação de escala, mas não consegui identificar a outra transformação e nem a matriz canônica.
Alguém poderia me auxiliar?
Anexos
transformação1.jpg
figura do exercício
transformação1.jpg (7.29 KiB) Exibido 1955 vezes
manuela
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Out 18, 2012 19:52
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Transformações

Mensagempor young_jedi » Seg Out 29, 2012 20:15

as transformações que eu visualizei são mudança de escala e cisalhamento, assim como voce.

então matriz transformação fica

\begin{bmatrix}2&1\\0&1/2\end{bmatrix}.\begin{bmatrix}x\\y\end{bmatrix}

subsitituindo os valores conferem todos, não encontrei nenhuma outra transformação
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Transformações

Mensagempor manuela » Qua Out 31, 2012 16:24

Então essa seria a matriz canônica do produto, né? E a da composição seria o resultado da multiplicação?
manuela
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Out 18, 2012 19:52
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Transformações

Mensagempor young_jedi » Qua Out 31, 2012 18:37

Sim a matriz da transformação de cisalhamento é

\begin{bmatrix} 1&\frac{1}{2} \\0&1 \end{bmatrix}

e a de transformação de escala

\begin{bmatrix}2&0\\0&1\end{bmatrix}

o produto das duas sera

\begin{bmatrix}2&0\\0&1\end{bmatrix}.\begin{bmatrix}1&\frac{1}{2}\\0&1\end{bmatrix}=\begin{bmatrix}2&1\\0&\frac{1}{2}\end{bmatrix}

no meu ver esta matriz, ja é a matriz canonica da composição das trasnformações
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59