• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Transformações

Transformações

Mensagempor manuela » Seg Out 29, 2012 17:30

Preciso identificar, as 3 transformações geométricas que resultaram na transformação linear da imagem abaixo, além da matriz canônica da composição e o produto das matrizes canônicas das transformações aplicadas. Lembrando que a transformação inicial forma um quadrado de vértices (0,0), (2,0), (2,2), (0,2)

Identifiquei um cisalhamento que suponho ser de fator 2 e uma transformação de escala, mas não consegui identificar a outra transformação e nem a matriz canônica.
Alguém poderia me auxiliar?
Anexos
transformação1.jpg
figura do exercício
transformação1.jpg (7.29 KiB) Exibido 1860 vezes
manuela
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Out 18, 2012 19:52
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Transformações

Mensagempor young_jedi » Seg Out 29, 2012 20:15

as transformações que eu visualizei são mudança de escala e cisalhamento, assim como voce.

então matriz transformação fica

\begin{bmatrix}2&1\\0&1/2\end{bmatrix}.\begin{bmatrix}x\\y\end{bmatrix}

subsitituindo os valores conferem todos, não encontrei nenhuma outra transformação
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Transformações

Mensagempor manuela » Qua Out 31, 2012 16:24

Então essa seria a matriz canônica do produto, né? E a da composição seria o resultado da multiplicação?
manuela
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Out 18, 2012 19:52
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Transformações

Mensagempor young_jedi » Qua Out 31, 2012 18:37

Sim a matriz da transformação de cisalhamento é

\begin{bmatrix} 1&\frac{1}{2} \\0&1 \end{bmatrix}

e a de transformação de escala

\begin{bmatrix}2&0\\0&1\end{bmatrix}

o produto das duas sera

\begin{bmatrix}2&0\\0&1\end{bmatrix}.\begin{bmatrix}1&\frac{1}{2}\\0&1\end{bmatrix}=\begin{bmatrix}2&1\\0&\frac{1}{2}\end{bmatrix}

no meu ver esta matriz, ja é a matriz canonica da composição das trasnformações
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}