• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Transformações

Transformações

Mensagempor manuela » Seg Out 29, 2012 17:30

Preciso identificar, as 3 transformações geométricas que resultaram na transformação linear da imagem abaixo, além da matriz canônica da composição e o produto das matrizes canônicas das transformações aplicadas. Lembrando que a transformação inicial forma um quadrado de vértices (0,0), (2,0), (2,2), (0,2)

Identifiquei um cisalhamento que suponho ser de fator 2 e uma transformação de escala, mas não consegui identificar a outra transformação e nem a matriz canônica.
Alguém poderia me auxiliar?
Anexos
transformação1.jpg
figura do exercício
transformação1.jpg (7.29 KiB) Exibido 1859 vezes
manuela
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Out 18, 2012 19:52
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Transformações

Mensagempor young_jedi » Seg Out 29, 2012 20:15

as transformações que eu visualizei são mudança de escala e cisalhamento, assim como voce.

então matriz transformação fica

\begin{bmatrix}2&1\\0&1/2\end{bmatrix}.\begin{bmatrix}x\\y\end{bmatrix}

subsitituindo os valores conferem todos, não encontrei nenhuma outra transformação
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Transformações

Mensagempor manuela » Qua Out 31, 2012 16:24

Então essa seria a matriz canônica do produto, né? E a da composição seria o resultado da multiplicação?
manuela
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Out 18, 2012 19:52
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Transformações

Mensagempor young_jedi » Qua Out 31, 2012 18:37

Sim a matriz da transformação de cisalhamento é

\begin{bmatrix} 1&\frac{1}{2} \\0&1 \end{bmatrix}

e a de transformação de escala

\begin{bmatrix}2&0\\0&1\end{bmatrix}

o produto das duas sera

\begin{bmatrix}2&0\\0&1\end{bmatrix}.\begin{bmatrix}1&\frac{1}{2}\\0&1\end{bmatrix}=\begin{bmatrix}2&1\\0&\frac{1}{2}\end{bmatrix}

no meu ver esta matriz, ja é a matriz canonica da composição das trasnformações
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?