• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Comprimento do arco!! Urgente!!

Comprimento do arco!! Urgente!!

Mensagempor manuoliveira » Ter Out 23, 2012 20:34

Ache o comprimento do arco da curva definida por x = t³/3 e y = t²/2 do ponto A = (0, 0) ao ponto B = (1/3, 1/2)

Agradeço desde já quem puder ajudar!!!
manuoliveira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 61
Registrado em: Qui Abr 01, 2010 19:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando

Re: Comprimento do arco!! Urgente!!

Mensagempor manuoliveira » Ter Out 23, 2012 20:44

Cheguei ao resultado 1/3 mas não tenho gabarito. Gostaria de saber se confere. Caso não, como resolver?
manuoliveira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 61
Registrado em: Qui Abr 01, 2010 19:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando

Re: Comprimento do arco!! Urgente!!

Mensagempor young_jedi » Ter Out 23, 2012 20:53

para comprimentos de arcos voce deve utilizar a integral

\int\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2}.dt

utilizando isto com as equações de x e y que voce tem

\int_{0}^{1}\sqrt{(t^2)^2+t^2}dt

\int_{0}^{1}t\sqrt{t^2+1}dt

por substituição

u=t^2+1
du=2t.dt

\frac{1}{2}\int\sqrt{u}du=

\frac{1}{3}(t^2+1)^{\frac{3}{2}}\Big|_{0}^{1}=

\frac{2\sqrt{2}}{3}-\frac{1}{3}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Comprimento do arco!! Urgente!!

Mensagempor Russman » Ter Out 23, 2012 20:59

Suponhamos que o comprimento da curva entre os pontos A e B seja S. Vamos dividir esse arco em n pequenos intervalos \Delta S de forma que \Delta S^2 = \Delta x^2+\Delta y^2.
Quanto menores forem estes intervalos mais exato se torna essa aproximação de forma que

\lim_{n\rightarrow \infty  }\Delta S=ds \Rightarrow ds^2=dx^2+dy^2.

Como S=\int_{A}^{B}ds basta tomarmos ds=\sqrt{dx^2+dy^2} e integrar.

Veja que a curva esta parametrizada, isto é, x=x(t) e y=y(t) de onde

dx = \frac{\mathrm{d} x}{\mathrm{d} t}dt = \left (\frac{\mathrm{d} }{\mathrm{d} t}\frac{t^3}{3}  \right )dt = t^2dt

dy = \frac{\mathrm{d} y}{\mathrm{d} t}dt = \left (\frac{\mathrm{d} }{\mathrm{d} t}\frac{t^2}{2}  \right )dt = t dt

e portanto

ds^2 = (t^2dt)^2 + (tdt)^2 = (t^4 + t^2)dt^2\Rightarrow ds = dt \sqrt{t^4+t^2}.

O ponto A é obtido tomando t=0 e o B tomando t=1. Finalmente,

S=\int_{0}^{1} dt \sqrt{t^4+t^2}.

Agora basta integral. (:
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Comprimento do arco!! Urgente!!

Mensagempor manuoliveira » Ter Out 23, 2012 21:43

Obrigada!!
manuoliveira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 61
Registrado em: Qui Abr 01, 2010 19:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59