• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Grandezas Diretamente e Inversamente Proporcionais

Grandezas Diretamente e Inversamente Proporcionais

Mensagempor Jhenrique » Seg Out 15, 2012 13:13

Saudações, caros estudantes!

Farei algumas afirmações e gostaria que as confirmassem como verdadeiras ou não, a final de contas, posso ter deduzido algo errado...

Grandezas Diretamente Proporcionais

(i) y:x=k

(ii) f(x\cdot n) = f(x)\cdot n

(iii) f(x_1+x_2) = k(x_1+x_2) = kx_1 + kx_2 = f(x_1)+f(x_2)

Do tipo Expononencial

(i) y^{\frac{1}{x}}=k

(ii) f(x\cdot n) = f(x)^n

(iii) f(x_1+x_2) = k^{x_1+x_2} = k^{x_1}\cdot k^{x_2} = f(x_1)\cdot f(x_2)

Grandezas Inversamente Proporcionais

(i) y\cdot x=k

(ii) f(x\cdot n) = f(x):n

(iii) f(x_1+x_2) = k(1:x_1 + 1:x_2) = k:x_1 + k:x_2 = f(x_1)+f(x_2)

Do tipo logarítmica

(i) x^{\frac {1}{y}} = k

(ii) f(x^n)=f(x)\cdot n

(iii) f(x_1\cdot x_2) = log_{k}(x_1\cdot x_2) = log_{k}(x_1)+log_{k}(x_2) = f(x_1)+f(x_2)

Estão corretas?

Obg!
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado

Re: Grandezas Diretamente e Inversamente Proporcionais

Mensagempor young_jedi » Seg Out 15, 2012 15:35

verifiquei um equivoco, no tipo inversamente proporcional item III

f(x_1+x_2)=\frac{k}{x_1+x_2}=\frac{k}{\frac{1}{x_2}+\frac{1}{x_1}}\frac{1}{x_1.x_2}=

=\frac{1}{\frac{k}{x_2}+\frac{k}{x_1}}\frac{k.k}{x_1.x_2}=\frac{f(x_1).f(x_2)}{f(x_2)+f(x_1)}

como voce pode ver o resultado é diferente
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Grandezas Diretamente e Inversamente Proporcionais

Mensagempor Jhenrique » Sáb Out 20, 2012 23:37

Tá tudo errado!

Vou redefinir os conceitos a fim de que se alguém pesquisar o assunto no fórum, que fique bem informado!

• Grandezas diretamente proporcionais

y=kx

sua simétrica

y=\frac{1}{k} x

do tipo exponencial

y=k^{x}

sua simétrica

y=log_{k}(x)

• Grandezas inversamente proporcionais

y=k\frac{1}{x}

sua simétrica

y=k\frac{1}{x}

do tipo exponencial

y=k^{\frac{1}{x} }

sua simétrica

y=log_{x}(k)

o resto é consequência dessas definições...

Jedi, vlw pelo alerta!
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado

Re: Grandezas Diretamente e Inversamente Proporcionais

Mensagempor e8group » Sáb Out 20, 2012 23:49

Tome cuidado com ii) . Não necessariamente f(x\cdot n)  = f(x) \cdot n . Contra exemplo , vamos supor que f(x)  = x^3  + x  + 5 .É fácil ver que f( xn ) \neq  f(x) \cdot n pois , f( xn)  = (xn)^3 +xn + 5 \neq  n( x^3  + x  + 5 ) .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Grandezas Diretamente e Inversamente Proporcionais

Mensagempor Jhenrique » Seg Nov 05, 2012 13:55

santhiago escreveu:Tome cuidado com ii) . Não necessariamente f(x\cdot n)  = f(x) \cdot n . Contra exemplo , vamos supor que f(x)  = x^3  + x  + 5 .É fácil ver que f( xn ) \neq  f(x) \cdot n pois , f( xn)  = (xn)^3 +xn + 5 \neq  n( x^3  + x  + 5 ) .


Ah, então, não te respondi antes pq estava ocupado, mas já estudei o assunto.

Realmente, seu contra-exemplo está certo. Porém, a função que vc usou não satisfaz nenhuma das igualdades proporcionais abaixo.

a:b=c
a\cdot b=c
a^{:b}=c
a^{\cdot b}=c

*Sendo a e b as váriveis e c a constante de proporcionalidade.

A função que vc citou não é uma proporção, não porque ela é do 2º grau, mas sim porque não é possível isolar as variáveis no 1º mebro e as constantes no 2º membro.

Eu até lanço a seguinte reflexão e questionamento: o requisito algébrico para grandezas serem proporcionais, é satisfazer uma das quatro equações acima, ok. Mas supondo b é a variável x, se x for x^2, x^3, x^4 ou x^n, todas as propriedades de proporcionalidade continua sendo válidas, independente do expoente da variável x, fato.
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: