• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Verificar a Resolução

[Limite] Verificar a Resolução

Mensagempor eli83 » Ter Out 09, 2012 09:13

Encontre o limite da função:

\lim_{x\to0}\frac{x}{\sqrt{x+1}-1}

Não podemos aplicar a definição direta de limite, pois se substituirmos x por zero, teremos o denominador igual a zero.
Então racionalizando o denominador temos:

\frac{x}{\sqrt{x+1}-1} . \frac{\sqrt{x+1}+1}{\sqrt{x+1}+1} =

= \frac{x.(\sqrt{x+1}+1)}{(\sqrt{x+1}-1)(\sqrt{x+1}+1)} =

= \frac{x.(\sqrt{x+1}+1)}{ (x +1) -1} =

= {\sqrt{x+1}+1} =

Então:

= \lim_{x\to0}\frac{x}{\sqrt{x+1}-1} =

= \lim_{x\to0} {\sqrt{x+1}+1} = 2

Gostaria que alguem verificasse a minha resolução.
Editado pela última vez por eli83 em Qua Out 10, 2012 00:38, em um total de 1 vez.
eli83
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Sáb Out 06, 2012 11:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: [Limite] Verificar a Resolução

Mensagempor young_jedi » Ter Out 09, 2012 10:22

Está certo
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Limite] Verificar a Resolução

Mensagempor MarceloFantini » Ter Out 09, 2012 11:01

O único erro está em \lim_{x \to 0} \sqrt{x+1} +1 = \lim_{x \to 0} 2 = 2. Você aplicou o limite na primeira igualdade e manteve o limite, isto está errado. Deveria ter escrito \lim_{x \to 0} \sqrt{x+1} +1 = 2.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Limite] Verificar a Resolução

Mensagempor eli83 » Qua Out 10, 2012 00:39

Erro Corrigido.
Grata.
eli83
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Sáb Out 06, 2012 11:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.