• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Verificar a Resolução

[Limite] Verificar a Resolução

Mensagempor eli83 » Ter Out 09, 2012 09:13

Encontre o limite da função:

\lim_{x\to0}\frac{x}{\sqrt{x+1}-1}

Não podemos aplicar a definição direta de limite, pois se substituirmos x por zero, teremos o denominador igual a zero.
Então racionalizando o denominador temos:

\frac{x}{\sqrt{x+1}-1} . \frac{\sqrt{x+1}+1}{\sqrt{x+1}+1} =

= \frac{x.(\sqrt{x+1}+1)}{(\sqrt{x+1}-1)(\sqrt{x+1}+1)} =

= \frac{x.(\sqrt{x+1}+1)}{ (x +1) -1} =

= {\sqrt{x+1}+1} =

Então:

= \lim_{x\to0}\frac{x}{\sqrt{x+1}-1} =

= \lim_{x\to0} {\sqrt{x+1}+1} = 2

Gostaria que alguem verificasse a minha resolução.
Editado pela última vez por eli83 em Qua Out 10, 2012 00:38, em um total de 1 vez.
eli83
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Sáb Out 06, 2012 11:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: [Limite] Verificar a Resolução

Mensagempor young_jedi » Ter Out 09, 2012 10:22

Está certo
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Limite] Verificar a Resolução

Mensagempor MarceloFantini » Ter Out 09, 2012 11:01

O único erro está em \lim_{x \to 0} \sqrt{x+1} +1 = \lim_{x \to 0} 2 = 2. Você aplicou o limite na primeira igualdade e manteve o limite, isto está errado. Deveria ter escrito \lim_{x \to 0} \sqrt{x+1} +1 = 2.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Limite] Verificar a Resolução

Mensagempor eli83 » Qua Out 10, 2012 00:39

Erro Corrigido.
Grata.
eli83
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Sáb Out 06, 2012 11:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59