• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite]no Ponto Dado

[Limite]no Ponto Dado

Mensagempor eli83 » Sáb Out 06, 2012 14:16

Aplicando o conceito de exitência de limite, verifique se existe o limite da seguinte função quando x tende para zero:

f(x)\ =\frac {\sqrt{5x^3 + 18}} {x+\frac{3}{2}}


O limite de uma função existe, em dado ponto, quando existirem os limites laterais (no ponto dado) pela direita e pela esquerda, e os mesmos forem iguais. Mas eu não consegui fazer utilizando limites laterais.

Então fiz utilizando Continuidade.
Se f é contínua em a, então as três condições deverão ser satisfeitas.

existe f(a)

existe \lim_{x\to a}

\lim_{x\to a}\ f(x) = f(a)


Devemos verificar se:

\lim_{x\to 0}\ f(x) = f(0)


\lim_{x\to 0}\frac {\sqrt{5x^3 + 18}} {x+\frac{3}{2}} = f(0)

\lim_{x\to 0}\frac {\sqrt{5x^3 + 18}} {x+\frac{3}{2}}

\lim_{x\to 0} {\sqrt12} = {\sqrt12}

f(0) = {\sqrt12}

Portanto a função é continua no ponto x = 0

e também existe \lim_{x\to 0}\frac {\sqrt{5x^3 + 18}} {x+\frac{3}{2}}


Gostaria de saber se esta resolução por continuidade está correta ou se eu devo usar limites laterais.
eli83
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Sáb Out 06, 2012 11:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: [Limite]no Ponto Dado

Mensagempor MarceloFantini » Sáb Out 06, 2012 14:33

Você deve calculá-los separadamente para depois dizer que são iguais. Se você escrever \lim_{x \to 0} \frac{\sqrt{5x^3 +18}}{x + \frac{3}{2}} = f(0) de cara você está afirmando o que quer provar e assim pode ter sua nota integralmente anulada.

Diga que não há qualquer restrições ao valor x=0 e que f(0) = \frac{\sqrt{18}}{\frac{3}{2}} = 2 \sqrt{2}. Por outro lado, calcule o limite e mostre que tem o mesmo valor. Logo eles existem e são iguais.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.