• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite]no Ponto Dado

[Limite]no Ponto Dado

Mensagempor eli83 » Sáb Out 06, 2012 14:16

Aplicando o conceito de exitência de limite, verifique se existe o limite da seguinte função quando x tende para zero:

f(x)\ =\frac {\sqrt{5x^3 + 18}} {x+\frac{3}{2}}


O limite de uma função existe, em dado ponto, quando existirem os limites laterais (no ponto dado) pela direita e pela esquerda, e os mesmos forem iguais. Mas eu não consegui fazer utilizando limites laterais.

Então fiz utilizando Continuidade.
Se f é contínua em a, então as três condições deverão ser satisfeitas.

existe f(a)

existe \lim_{x\to a}

\lim_{x\to a}\ f(x) = f(a)


Devemos verificar se:

\lim_{x\to 0}\ f(x) = f(0)


\lim_{x\to 0}\frac {\sqrt{5x^3 + 18}} {x+\frac{3}{2}} = f(0)

\lim_{x\to 0}\frac {\sqrt{5x^3 + 18}} {x+\frac{3}{2}}

\lim_{x\to 0} {\sqrt12} = {\sqrt12}

f(0) = {\sqrt12}

Portanto a função é continua no ponto x = 0

e também existe \lim_{x\to 0}\frac {\sqrt{5x^3 + 18}} {x+\frac{3}{2}}


Gostaria de saber se esta resolução por continuidade está correta ou se eu devo usar limites laterais.
eli83
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Sáb Out 06, 2012 11:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: [Limite]no Ponto Dado

Mensagempor MarceloFantini » Sáb Out 06, 2012 14:33

Você deve calculá-los separadamente para depois dizer que são iguais. Se você escrever \lim_{x \to 0} \frac{\sqrt{5x^3 +18}}{x + \frac{3}{2}} = f(0) de cara você está afirmando o que quer provar e assim pode ter sua nota integralmente anulada.

Diga que não há qualquer restrições ao valor x=0 e que f(0) = \frac{\sqrt{18}}{\frac{3}{2}} = 2 \sqrt{2}. Por outro lado, calcule o limite e mostre que tem o mesmo valor. Logo eles existem e são iguais.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: