por mih123 » Ter Set 18, 2012 12:56
Olá, não sei resolver esse limite.Não sei nem a resposta.. ;/
![\lim_{x\to\infty}\left[\frac{1}{\sqrt[2]{{n}^{2}+1}}+ \frac{1}{\sqrt[2]{{n}^{2}+2}}+\frac{1}{\sqrt[2]{{n}^{2}+3}}+...+\frac{1}{\sqrt[2]{{n}^{2}+n}}\right]} \lim_{x\to\infty}\left[\frac{1}{\sqrt[2]{{n}^{2}+1}}+ \frac{1}{\sqrt[2]{{n}^{2}+2}}+\frac{1}{\sqrt[2]{{n}^{2}+3}}+...+\frac{1}{\sqrt[2]{{n}^{2}+n}}\right]}](/latexrender/pictures/59555e4a6d61612684fbc6fe55bb5681.png)
-
mih123
- Usuário Dedicado

-
- Mensagens: 35
- Registrado em: Seg Ago 27, 2012 03:15
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por young_jedi » Ter Set 18, 2012 13:39
Só uma duvida, é limite de x tendendo ao infinito ou seria limite de n tendendo ao infinito?
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por mih123 » Ter Set 18, 2012 14:00
Então, na questão está x tendendo a infinito,mas eu acho que seria n tendendo a infinito.
-
mih123
- Usuário Dedicado

-
- Mensagens: 35
- Registrado em: Seg Ago 27, 2012 03:15
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Renato_RJ » Ter Set 18, 2012 14:13
Estou um tanto confuso com essa questão... O termo

não parece ser o mesmo n do último termo, veja como eu estou entendendo essa série:

E isso é muito estranho (ao menos para mim)....
Tem como rever a questão detalhadamente ?? Tipo, algo no enunciado por exemplo....
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por young_jedi » Ter Set 18, 2012 14:15
temos que

mas


temos tambem que

mas

mas


pelo teorema do confronto se

e


então

com isso temos

-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por mih123 » Ter Set 18, 2012 14:36
No enunciado diz apenas pra determinar o limite.Quando tiver aula novamente com o professor eu pergunto.
Valew

-
mih123
- Usuário Dedicado

-
- Mensagens: 35
- Registrado em: Seg Ago 27, 2012 03:15
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Renato_RJ » Ter Set 18, 2012 14:53
mih123 escreveu:No enunciado diz apenas pra determinar o limite.Quando tiver aula novamente com o professor eu pergunto.
Valew

Opa, o colega Young_Jedi matou a questão !!
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por mih123 » Ter Set 18, 2012 15:11
-
mih123
- Usuário Dedicado

-
- Mensagens: 35
- Registrado em: Seg Ago 27, 2012 03:15
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por young_jedi » Ter Set 18, 2012 15:15
porque ai voce so colocou quatro termos da serie
mais a quantidades de termos depende de n tambem
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por mih123 » Qua Set 19, 2012 02:17
young_jedi escreveu:temos que

mas


temos tambem que

mas

mas


pelo teorema do confronto se

e


então

com isso temos

Boa Noite, Young_jedi estou muito confusa com sua resolução, não consegui entender porque ficou
![\frac{1}{\sqrt[2]{{n}^{2}}} \frac{1}{\sqrt[2]{{n}^{2}}}](/latexrender/pictures/992bc21124b78030dd046d5bf3d7a435.png)
e na outra função
![\frac{1} {\sqrt[2]{{n}^{2}+n}} \frac{1} {\sqrt[2]{{n}^{2}+n}}](/latexrender/pictures/9e6a1c079abe75698c34de12a0f142e5.png)
??
-
mih123
- Usuário Dedicado

-
- Mensagens: 35
- Registrado em: Seg Ago 27, 2012 03:15
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por MarceloFantini » Qua Set 19, 2012 02:27
Ele não falou que é igual, e sim que é menor. Note que

para todo valor natural, então

e

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por mih123 » Qua Set 19, 2012 13:55
Ahh sim. Olhei direitinho, entendi! Muito Obrigada.
-
mih123
- Usuário Dedicado

-
- Mensagens: 35
- Registrado em: Seg Ago 27, 2012 03:15
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] Gráfico e limite para função maior inteiro
por Raphaela_sf » Qui Abr 05, 2012 19:26
- 1 Respostas
- 6405 Exibições
- Última mensagem por LuizAquino

Qui Abr 05, 2012 20:53
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções reais de várias variáveis
por Bianca_R » Dom Nov 04, 2012 17:17
- 1 Respostas
- 4431 Exibições
- Última mensagem por MarceloFantini

Dom Nov 04, 2012 19:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite trigonométrico] Como calculo este limite?
por Ronaldobb » Qua Nov 07, 2012 23:14
- 3 Respostas
- 4745 Exibições
- Última mensagem por Ronaldobb

Qui Nov 08, 2012 07:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] limite trigonométrico quando x tende ao infinito
por Ge_dutra » Seg Jan 28, 2013 10:13
- 2 Respostas
- 6956 Exibições
- Última mensagem por Ge_dutra

Ter Jan 29, 2013 14:20
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções piso (maior inteiro)
por ViniciusAlmeida » Sáb Fev 14, 2015 10:09
- 2 Respostas
- 4185 Exibições
- Última mensagem por adauto martins

Qui Fev 19, 2015 15:01
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.