• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação Trigonométrica.

Equação Trigonométrica.

Mensagempor rodsales » Sáb Ago 29, 2009 18:41

Sabe-se que senx = m \neq 0 e cosx = n \neq 0. Calcule o valor de sec x + tg x + cotg x em função de m e n.


Eu refiz o exercício várias vezes e nao consigo encontrar meu erro, por favor faça com detelhas para que eu possa ver onde eu errei.


Grato,
Aguardo respostas.
Avatar do usuário
rodsales
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Ter Abr 14, 2009 21:28
Formação Escolar: ENSINO MÉDIO
Área/Curso: administração
Andamento: cursando

Re: Equação Trigonométrica.

Mensagempor Elcioschin » Sáb Ago 29, 2009 19:25

rodasales

1) Você deveria ter mostrado as suas tentativas para vermos onde você errou.
2) Você deveria ter mostrado a resposta, pois parece que você a conhece!

sec x + tg x + cotg x = (1/cos x) + (sen x/cos x)+ (cos x/sen x) = 1/n + m/n + n/m

MMC = m*n

sec x = tg x + cotg x = (m + m² + n²)/m*n
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Equação Trigonométrica.

Mensagempor rodsales » Sáb Ago 29, 2009 20:15

Ok. Fiz da seguinte maneira:

1/cosx+senx/cosx+cosx/senx => (cosx.senx+cosx.sen²x+cos³x)/cos²x.senx => n.m+n.m²+n³/n².m , simplificando tem o meu resultado
(1+m)/n + n²

Contudo, a resposta do livro é:

(m+1)/m.n

Acredito que eu errei algo de continha mesmo, mas não consegui enxergar.


Grato,
Aguardo respostas.
Avatar do usuário
rodsales
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Ter Abr 14, 2009 21:28
Formação Escolar: ENSINO MÉDIO
Área/Curso: administração
Andamento: cursando

Re: Equação Trigonométrica.

Mensagempor Elcioschin » Sáb Ago 29, 2009 21:06

rodsales:

1) Para facilitar você JÁ deveria ter subsituído senx, cosx por m, n.

2) Para facilitar você deveria usar o MMC = senx*cosx (ao invés de cos²x*senx)

3) Mesmo assim você acertou até (n.m+n.m²+n³)/n².m , faltando apenas colocar parenteses no numerador.

Porém, você errou na hora de simplificar: basta simplificar n no numerador e denominador:

(m + m² + n²)/m*n ----> Exatamente a minha solução

Complementando minha solução ----> m² + n² = sen²x + cos²x -----> m² + n² = 1 ----> Solução (m + 1)/m*n
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Equação Trigonométrica.

Mensagempor rodsales » Sáb Ago 29, 2009 21:19

Agora entendi, obrigado!!!
Avatar do usuário
rodsales
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Ter Abr 14, 2009 21:28
Formação Escolar: ENSINO MÉDIO
Área/Curso: administração
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.