• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação Trigonométrica.

Equação Trigonométrica.

Mensagempor rodsales » Sáb Ago 29, 2009 18:41

Sabe-se que senx = m \neq 0 e cosx = n \neq 0. Calcule o valor de sec x + tg x + cotg x em função de m e n.


Eu refiz o exercício várias vezes e nao consigo encontrar meu erro, por favor faça com detelhas para que eu possa ver onde eu errei.


Grato,
Aguardo respostas.
Avatar do usuário
rodsales
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Ter Abr 14, 2009 21:28
Formação Escolar: ENSINO MÉDIO
Área/Curso: administração
Andamento: cursando

Re: Equação Trigonométrica.

Mensagempor Elcioschin » Sáb Ago 29, 2009 19:25

rodasales

1) Você deveria ter mostrado as suas tentativas para vermos onde você errou.
2) Você deveria ter mostrado a resposta, pois parece que você a conhece!

sec x + tg x + cotg x = (1/cos x) + (sen x/cos x)+ (cos x/sen x) = 1/n + m/n + n/m

MMC = m*n

sec x = tg x + cotg x = (m + m² + n²)/m*n
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Equação Trigonométrica.

Mensagempor rodsales » Sáb Ago 29, 2009 20:15

Ok. Fiz da seguinte maneira:

1/cosx+senx/cosx+cosx/senx => (cosx.senx+cosx.sen²x+cos³x)/cos²x.senx => n.m+n.m²+n³/n².m , simplificando tem o meu resultado
(1+m)/n + n²

Contudo, a resposta do livro é:

(m+1)/m.n

Acredito que eu errei algo de continha mesmo, mas não consegui enxergar.


Grato,
Aguardo respostas.
Avatar do usuário
rodsales
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Ter Abr 14, 2009 21:28
Formação Escolar: ENSINO MÉDIO
Área/Curso: administração
Andamento: cursando

Re: Equação Trigonométrica.

Mensagempor Elcioschin » Sáb Ago 29, 2009 21:06

rodsales:

1) Para facilitar você JÁ deveria ter subsituído senx, cosx por m, n.

2) Para facilitar você deveria usar o MMC = senx*cosx (ao invés de cos²x*senx)

3) Mesmo assim você acertou até (n.m+n.m²+n³)/n².m , faltando apenas colocar parenteses no numerador.

Porém, você errou na hora de simplificar: basta simplificar n no numerador e denominador:

(m + m² + n²)/m*n ----> Exatamente a minha solução

Complementando minha solução ----> m² + n² = sen²x + cos²x -----> m² + n² = 1 ----> Solução (m + 1)/m*n
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Equação Trigonométrica.

Mensagempor rodsales » Sáb Ago 29, 2009 21:19

Agora entendi, obrigado!!!
Avatar do usuário
rodsales
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Ter Abr 14, 2009 21:28
Formação Escolar: ENSINO MÉDIO
Área/Curso: administração
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: