• Anúncio Global
    Respostas
    Exibições
    Última mensagem

como calcular determinantes de ordem elevada

como calcular determinantes de ordem elevada

Mensagempor marcos chaves » Seg Set 03, 2012 18:18

quero saber se existem teoremas etc para se calcular determinantes de ordem 1000 ou mais
marcos chaves
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Fev 25, 2012 16:50
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharelado em matematica
Andamento: formado

Re: como calcular determinantes de ordem elevada

Mensagempor MarceloFantini » Seg Set 03, 2012 18:24

Existe a expansão de Laplace para calcular determinantes de matrizes n \times n para qualquer n \in \mathbb{N}. Dê uma olhada aqui e aqui.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: como calcular determinantes de ordem elevada

Mensagempor marcos chaves » Seg Set 03, 2012 18:40

MarceloFantini escreveu:Existe a expansão de Laplace para calcular determinantes de matrizes n \times n para qualquer n \in \mathbb{N}. Dê uma olhada aqui e aqui.

Para resolver determinante de ordem 1000, por Laplace ,pode ser que eu necessite de um milhao de anos , que eu justamente agora não disponho
marcos chaves
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Fev 25, 2012 16:50
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharelado em matematica
Andamento: formado

Re: como calcular determinantes de ordem elevada

Mensagempor MarceloFantini » Seg Set 03, 2012 18:44

Se você olhou no segundo link que enviei, veria que eles citam como exemplos os métodos de decomposição LU, decomposição QR e decomposição Cholesky.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: como calcular determinantes de ordem elevada

Mensagempor LuizAquino » Seg Set 03, 2012 22:36

marcos chaves escreveu:quero saber se existem teoremas etc para se calcular determinantes de ordem 1000 ou mais


Um método simples é transformar a matriz original em uma outra que tenha o mesmo determinante, mas que seja triangular superior ou inferior.

Eu recomendo que você assista o final da parte 3 e a parte 4 da videoaula "Matemática - Aula 20 - Determinantes". Elas estão disponíveis no canal do Nerckie no YouTube:

http://www.youtube.com/nerckie
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59