• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Lei dos Senos] aplicação em um triângulo qualquer...Dúvida!

[Lei dos Senos] aplicação em um triângulo qualquer...Dúvida!

Mensagempor TOPO_PAIM » Sex Ago 17, 2012 01:45

Dado um triângulo qualquer, com suas dimensões: b=529,42; c=946,72 e ângulo B=33º03'56". Calcular os restantes dos ângulos internos (A e C) e o valor do lado a.
questao_prova_matematica.jpg
Questão a ser resolvida


Tentei aplicar a lei dos senos: \frac{a}{senA}=\frac{b}{senB}=\frac{c}{senC} e a lei dos cossenos: a² =b² +c² -2.b.c.cosA para descobrir a distancia do lado a.


Ja que possuo 2 lados e 1 ângulo, a formula cabível seria a lei dos cossenos que ficaria assim: b²=a²+c²-2.a.c.cosB


529,42²=a²+946,72²-2.a.946,72.cos33º03'56"


Mas não foi possível o calculo.

E para calculo de ângulos é aplicável a formula: A=ArcCos\left(\frac{ab² +ac² -bc²}{2.ab.ac}\right)


Acredito que o enunciado da questão informe algum dos elementos errado.
Vejo que para esse calculo ser possível eu deveria saber 2 lados do triangulo e o angulo que é dado pela vértice formada por esses dois lados, nessa questão seria o angulo A,mostrado na figura, e não o B, que é o existente.


Espero ajuda, muito obrigado.
TOPO_PAIM
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Ago 16, 2012 23:02
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Informatica
Andamento: formado

Re: [Lei dos Senos] aplicação em um triângulo qualquer...Dúv

Mensagempor Russman » Sex Ago 17, 2012 01:59

O seu problema é determinar a terceira medida de um triângulo sabendo apenas duas medidas e um ângulo interno.

Suponhamos que os lados b e c do triângulo sejam conhecidos, bem como o angulo interno B oposto ao lado de medida b. Assim, do Teorema dos Cossenos, temos

b^2 = a^2 + c^2 - 2ac.cos(B)

Como os valores b, c e cos(B) são conhecido você fica com uma equação de 2° grau em a bem simples de resolver!

Quanto aos outros ângulos: Lembre-se que A+B+C = 180. Assim, como B é conhecido basta determinarmos ou A ou C que o restante fica explicito!

Optarei por deteminar A. Uma maneira é usar novamente o TeoremaDosCossenos:

a^2 = b^2 + c^2 - 2bc.cos(A)

de onde você pode facilmente isolar A uma vez que a,b e c são conhecidos!.

Calculado o valor de A, basta tomar C= 180 - B - A e seu problema esta solucionado!
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Lei dos Senos] aplicação em um triângulo qualquer...Dúv

Mensagempor TOPO_PAIM » Sex Ago 17, 2012 12:34

Russman escreveu:O seu problema é determinar a terceira medida de um triângulo sabendo apenas duas medidas e um ângulo interno.

Suponhamos que os lados b e c do triângulo sejam conhecidos, bem como o angulo interno B oposto ao lado de medida b. Assim, do Teorema dos Cossenos, temos

b^2 = a^2 + c^2 - 2ac.cos(B)

Como os valores b, c e cos(B) são conhecido você fica com uma equação de 2° grau em a bem simples de resolver!

Quanto aos outros ângulos: Lembre-se que A+B+C = 180. Assim, como B é conhecido basta determinarmos ou A ou C que o restante fica explicito!

Optarei por deteminar A. Uma maneira é usar novamente o TeoremaDosCossenos:

a^2 = b^2 + c^2 - 2bc.cos(A)

de onde você pode facilmente isolar A uma vez que a,b e c são conhecidos!.

Calculado o valor de A, basta tomar C= 180 - B - A e seu problema esta solucionado!


Caro amigo Russman, obrigado pela ajuda. Mas mesmo assim estou com dificuldade no desenvolvimento e na aplicação do teorema dos cossenos para descobrir o valor do lado "a"! Seria possível você mostrar desenvolvimento para mim?
Enquanto aos a resultados dos ângulos esta tranquilo.
Muito Obrigado
TOPO_PAIM
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Ago 16, 2012 23:02
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Informatica
Andamento: formado

Re: [Lei dos Senos] aplicação em um triângulo qualquer...Dúv

Mensagempor Russman » Sex Ago 17, 2012 16:12

Sim.

Uma equação de 2° grau geral é da forma ax^2+bx+c=0 e, como você bem deve saber, a solução se apresenta como x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}.

Observe que reescrevendo a equação de forma que

b^2=a^2+c^2-2ac.cos(B)\Rightarrow a^2+(-2c.cos(B))a +(c^2-b^2)=0

temos , comparando com a forma geral da equação de 2° grau,

\left\{\begin{matrix}
x\rightarrow a\\ 
a\rightarrow 1\\ 
b\rightarrow -2c.cos(B)\\ 
c\rightarrow c^2-b^2
\end{matrix}\right.

Ajudou?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59