• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Análise da continuidade de funções

Análise da continuidade de funções

Mensagempor V_Netto » Sáb Ago 04, 2012 15:34

Como eu analiso a continuidade, JUSTIFICANDO, da função R(X)= \left|x^2tgx \right|???
V_Netto
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Jul 30, 2012 11:45
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso Técnico em Química
Andamento: formado

Re: Análise da continuidade de funções

Mensagempor MarceloFantini » Sáb Ago 04, 2012 16:35

Justificando como, exatamente? Se você notar que esta função é composição de uma função contínua com o produto de duas funções contínuas, está justificado.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Análise da continuidade de funções

Mensagempor V_Netto » Sáb Ago 04, 2012 17:43

Tenho que achar o domínio e ir explicando pq ela é contínua em tal domínio.
V_Netto
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Jul 30, 2012 11:45
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso Técnico em Química
Andamento: formado

Re: Análise da continuidade de funções

Mensagempor MarceloFantini » Sáb Ago 04, 2012 18:01

Sejam h(x) = |x|, g(x) = \tan x e f(x) = x^2.

Note que h,f são contínuas em toda a reta real, então que para g seu maior domínio será D_g = \left\{ x \in \mathbb{R} | \left( \frac{- \pi}{2} + \pi n, \frac{\pi}{2} + \pi n \right), n \in \mathbb{Z} \right\}.

Assim, o maior domínio para (h \circ (fg))(x) = |x^2 \tan x| será D_{h \circ (fg)} = D_g. A continuidade segue diretamente do fato que produto de funções contínuas é contínua e composição de funções contínuas é contínua.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.