• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Análise da continuidade de funções

Análise da continuidade de funções

Mensagempor V_Netto » Sáb Ago 04, 2012 15:34

Como eu analiso a continuidade, JUSTIFICANDO, da função R(X)= \left|x^2tgx \right|???
V_Netto
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Jul 30, 2012 11:45
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso Técnico em Química
Andamento: formado

Re: Análise da continuidade de funções

Mensagempor MarceloFantini » Sáb Ago 04, 2012 16:35

Justificando como, exatamente? Se você notar que esta função é composição de uma função contínua com o produto de duas funções contínuas, está justificado.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Análise da continuidade de funções

Mensagempor V_Netto » Sáb Ago 04, 2012 17:43

Tenho que achar o domínio e ir explicando pq ela é contínua em tal domínio.
V_Netto
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Jul 30, 2012 11:45
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso Técnico em Química
Andamento: formado

Re: Análise da continuidade de funções

Mensagempor MarceloFantini » Sáb Ago 04, 2012 18:01

Sejam h(x) = |x|, g(x) = \tan x e f(x) = x^2.

Note que h,f são contínuas em toda a reta real, então que para g seu maior domínio será D_g = \left\{ x \in \mathbb{R} | \left( \frac{- \pi}{2} + \pi n, \frac{\pi}{2} + \pi n \right), n \in \mathbb{Z} \right\}.

Assim, o maior domínio para (h \circ (fg))(x) = |x^2 \tan x| será D_{h \circ (fg)} = D_g. A continuidade segue diretamente do fato que produto de funções contínuas é contínua e composição de funções contínuas é contínua.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.