• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(FESP-SP)P.G.

(FESP-SP)P.G.

Mensagempor Rafael16 » Qui Jul 19, 2012 23:10

Boa noite pessoal,

(FESP-SP) Em um triângulo equilátero de lado L, se unirmos os pontos médios de seus lados obtemos um novo triângulo equilátero. Se procedermos assim sucessivamente obteremos novos triângulos equiláteros, cada vez menores. O limite da soma das áreas dos triângulos equiláteros formados é:

Compreendi isso da seguinte maneira:

(l,\frac{l}{2},\frac{l}{4},...,\frac{l}{n})

Joguei na fórmula da soma de termos finitos, pois de acordo com o problema, haverá um limite.

S = \frac{l.((\frac{1}{2})^{n-1}-1)}{\frac{1}{2}}

A partir daqui não sei como prosseguir...

Resposta: {l}^{2}.\frac{\sqrt[]{3}}{3}

Valeu pessoal!
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: (FESP-SP)P.G.

Mensagempor Arkanus Darondra » Sex Jul 20, 2012 00:37

Rafael16 escreveu:Joguei na fórmula da soma de termos finitos, pois de acordo com o problema, haverá um limite.

Errado. Temos um P.G. infinita e decrescente.

Entenda "limite" como valor para o qual tende ou converge a soma.

Além disso você deverá encontrar a razão q entre as áreas.

Com isso, basta você utilizar a fórmula S=\frac{a1}{1-q}
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: (FESP-SP)P.G.

Mensagempor Russman » Sex Jul 20, 2012 02:17

Eu acredito que a área do n-ésimo triângulo formado se dá por

A_{n} = \frac{l^{2}}{4^{n}}\sqrt{3}.

Assim, a progressão é

l^{2}\sqrt{3} \left \{ \frac{1}{4^{1}}, \frac{1}{4^{2}}, \frac{1}{4^{3}}, \frac{1}{4^{4}},... \right \}

onde q =  \frac{1}{4}.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: (FESP-SP)P.G.

Mensagempor e8group » Sex Jul 20, 2012 11:44

Eu acho que tem como fazer assim também ,

A_1 = \frac{l^2\sqrt{3}} {4} \implies A_n = \left( \frac{l}{2^n}\right )^2\frac{\sqrt{3}} {4}\implies A_n =A_1\left(\frac{1}{2^{2n}} \right ) .Visto que A_1 é a área do triângulo equilátero e A_n é n-ésima área após n divisões , a parti daí segue que a soma é representado por S(A_n) , onde :

S(A_n) = \sum_{j=0}^{\infty}  \left( \frac{l}{2^j}\right )^2\frac{\sqrt{3}} {4} = A_1\left(\sum_{j=0}^{\infty} \frac{1}{2^{2j}}\right)

\implies  S(A_n)  = A_1\left( 1 + \frac{1}{4} +\frac{1}{16} +\dots \right)

Atribuindo uma variável a \left( 1 + \frac{1}{4} +\frac{1}{16} +\dots \right) com certeza obterá algo . Vale lembra que pela formula de P.G infinita decrescente obterá a soma cuja razão é \frac{1}{4} onde ,

S = \frac{A_1}{1-q} ,Lembrando que A_1  = \frac{l^2\sqrt{3}} {4} e q = \frac{1}{4} .Com isso você obtém a soma (até mais fácil haha ) ...
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Progressões

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59