• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(FESP-SP)P.G.

(FESP-SP)P.G.

Mensagempor Rafael16 » Qui Jul 19, 2012 23:10

Boa noite pessoal,

(FESP-SP) Em um triângulo equilátero de lado L, se unirmos os pontos médios de seus lados obtemos um novo triângulo equilátero. Se procedermos assim sucessivamente obteremos novos triângulos equiláteros, cada vez menores. O limite da soma das áreas dos triângulos equiláteros formados é:

Compreendi isso da seguinte maneira:

(l,\frac{l}{2},\frac{l}{4},...,\frac{l}{n})

Joguei na fórmula da soma de termos finitos, pois de acordo com o problema, haverá um limite.

S = \frac{l.((\frac{1}{2})^{n-1}-1)}{\frac{1}{2}}

A partir daqui não sei como prosseguir...

Resposta: {l}^{2}.\frac{\sqrt[]{3}}{3}

Valeu pessoal!
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: (FESP-SP)P.G.

Mensagempor Arkanus Darondra » Sex Jul 20, 2012 00:37

Rafael16 escreveu:Joguei na fórmula da soma de termos finitos, pois de acordo com o problema, haverá um limite.

Errado. Temos um P.G. infinita e decrescente.

Entenda "limite" como valor para o qual tende ou converge a soma.

Além disso você deverá encontrar a razão q entre as áreas.

Com isso, basta você utilizar a fórmula S=\frac{a1}{1-q}
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: (FESP-SP)P.G.

Mensagempor Russman » Sex Jul 20, 2012 02:17

Eu acredito que a área do n-ésimo triângulo formado se dá por

A_{n} = \frac{l^{2}}{4^{n}}\sqrt{3}.

Assim, a progressão é

l^{2}\sqrt{3} \left \{ \frac{1}{4^{1}}, \frac{1}{4^{2}}, \frac{1}{4^{3}}, \frac{1}{4^{4}},... \right \}

onde q =  \frac{1}{4}.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: (FESP-SP)P.G.

Mensagempor e8group » Sex Jul 20, 2012 11:44

Eu acho que tem como fazer assim também ,

A_1 = \frac{l^2\sqrt{3}} {4} \implies A_n = \left( \frac{l}{2^n}\right )^2\frac{\sqrt{3}} {4}\implies A_n =A_1\left(\frac{1}{2^{2n}} \right ) .Visto que A_1 é a área do triângulo equilátero e A_n é n-ésima área após n divisões , a parti daí segue que a soma é representado por S(A_n) , onde :

S(A_n) = \sum_{j=0}^{\infty}  \left( \frac{l}{2^j}\right )^2\frac{\sqrt{3}} {4} = A_1\left(\sum_{j=0}^{\infty} \frac{1}{2^{2j}}\right)

\implies  S(A_n)  = A_1\left( 1 + \frac{1}{4} +\frac{1}{16} +\dots \right)

Atribuindo uma variável a \left( 1 + \frac{1}{4} +\frac{1}{16} +\dots \right) com certeza obterá algo . Vale lembra que pela formula de P.G infinita decrescente obterá a soma cuja razão é \frac{1}{4} onde ,

S = \frac{A_1}{1-q} ,Lembrando que A_1  = \frac{l^2\sqrt{3}} {4} e q = \frac{1}{4} .Com isso você obtém a soma (até mais fácil haha ) ...
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Progressões

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}