• Anúncio Global
    Respostas
    Exibições
    Última mensagem

inequacoes

inequacoes

Mensagempor bmachado » Seg Jul 09, 2012 16:54

Sejam as funcoes reais f e g dadas por f(x)= \sqrt[]{x} e g(x) = \frac{4}{3(x-1)} + \frac{8}{3(x+2)} ; o dominio da funcao compoSta f o G e
Gab. {x \in \Re \prime -2 < x \preceq 0 ou x >1}

tentei resolvendo g(x) e encontrando 2 raízes no Denominador 1 e -2. O numeraDor ficou x= -7/12??
Minha duvida é pq o sinal de \leq ou \geq quando usa-lo?E o q fazer com f(x)= \sqrt[]{x} ???? Obrigado por colaborar com meu aprendizado!

Obrigado caro SantiaGo, mas, continuo com as mesmas duvidas acima.
Editado pela última vez por bmachado em Seg Jul 09, 2012 22:48, em um total de 1 vez.
bmachado
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Fev 29, 2012 00:28
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: EF
Andamento: formado

Re: inequacoes

Mensagempor e8group » Seg Jul 09, 2012 18:15

bmachado ,para encontarmos D (f o g) real temos primeiro que descrobrir se (f o g) é uma função "limitada", isto é se há um x para a qual Im (f o g) não é real .

Primeiro cabe a nós analisar a função composta ,pelo enunciado temos :


fog(x)=f(g(x)) = \sqrt{\frac{4}{3(x-1)}+\frac{8}{3(x+2)}}

Basta você observar o Domínio de (f o g) real .

note que ,


\frac{4}{3(x-1)}+\frac{8}{3(x+2)} \geq 0

3(x-1)\neq 0 e

3(x+2) \neq 0 ,desta forma obtera o Domínio real da função composta ,tente concluír ...
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59