• Anúncio Global
    Respostas
    Exibições
    Última mensagem

inequacoes

inequacoes

Mensagempor bmachado » Seg Jul 09, 2012 16:54

Sejam as funcoes reais f e g dadas por f(x)= \sqrt[]{x} e g(x) = \frac{4}{3(x-1)} + \frac{8}{3(x+2)} ; o dominio da funcao compoSta f o G e
Gab. {x \in \Re \prime -2 < x \preceq 0 ou x >1}

tentei resolvendo g(x) e encontrando 2 raízes no Denominador 1 e -2. O numeraDor ficou x= -7/12??
Minha duvida é pq o sinal de \leq ou \geq quando usa-lo?E o q fazer com f(x)= \sqrt[]{x} ???? Obrigado por colaborar com meu aprendizado!

Obrigado caro SantiaGo, mas, continuo com as mesmas duvidas acima.
Editado pela última vez por bmachado em Seg Jul 09, 2012 22:48, em um total de 1 vez.
bmachado
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Fev 29, 2012 00:28
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: EF
Andamento: formado

Re: inequacoes

Mensagempor e8group » Seg Jul 09, 2012 18:15

bmachado ,para encontarmos D (f o g) real temos primeiro que descrobrir se (f o g) é uma função "limitada", isto é se há um x para a qual Im (f o g) não é real .

Primeiro cabe a nós analisar a função composta ,pelo enunciado temos :


fog(x)=f(g(x)) = \sqrt{\frac{4}{3(x-1)}+\frac{8}{3(x+2)}}

Basta você observar o Domínio de (f o g) real .

note que ,


\frac{4}{3(x-1)}+\frac{8}{3(x+2)} \geq 0

3(x-1)\neq 0 e

3(x+2) \neq 0 ,desta forma obtera o Domínio real da função composta ,tente concluír ...
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)