Esse exercício eu não consegui resolver mas dei alguns passos:
1) Como AC é diâmetro, então o ângulo B é reto.
2)Aplicando Pitágoras no triângulo ABC temos que AC=
.À partir daí não sei o que fazer. Marquei então o ponto E no qual a bissetriz de B intercepta AC. Percebi que ABD e EBC são semelhantes. No entanto é necessário conhecer mais valores para aplicar a relação de semelhança. Não sei se para continuar o exercício devo usar relações trigonométricas(seno, tangente, etc.) . Tentei lembrar de algo que meu professor ensinou como o Teorema da Bissetriz Interna.
Por favor me ajudem.

. 
.
.
.
.
. Logo aplicamos a lei dos cossenos novamente para o lado DE desse triângulo. 


e que DBC = BBA = 45º


é superior ao diâmetro do círculo que o
.


em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
. O triângulo é retângulo com catetos
e
, tal que
. Seja
o ângulo complementar. Então
. Como
, o ângulo que o afixo
formará com a horizontal será
, então
. Como módulo é um:
.
.