• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integrais (áreas) [dúvida]

Integrais (áreas) [dúvida]

Mensagempor citadp » Qua Jun 20, 2012 11:21

Boas, tenho um exercicio de exame que eu não sei como se faz.

Calcule a área das curvas y = -x^2 + 4/3 e y = x^3/3. Note que as duas curvas admitem o mesmo ponto de abcissa 1.

Ora o que eu costumava fazer era -x^2+4/3 = x^3/3 e igualava a zero e depois fazio o integral dos pontos, mas este exercicio é diferente, não sei como aplicar.
citadp
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Jun 02, 2012 13:11
Formação Escolar: SUPLETIVO
Área/Curso: Informática
Andamento: cursando

Re: Integrais (áreas) [dúvida]

Mensagempor Russman » Qua Jun 20, 2012 13:56

A area delimitada entre as curvas, é isso?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Integrais (áreas) [dúvida]

Mensagempor citadp » Qua Jun 20, 2012 14:44

Sim
citadp
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Jun 02, 2012 13:11
Formação Escolar: SUPLETIVO
Área/Curso: Informática
Andamento: cursando

Re: Integrais (áreas) [dúvida]

Mensagempor Russman » Qui Jun 21, 2012 10:54

O primeira que você tem de fazer é calcular os pontos em que as curvas se intersectam. Estes serão seus limites de integração.

Fazendo isso, começamos com

-x^{2} + \frac{4}{3} = \frac{x^{3}}{3} \Rightarrow x^{3}+3x^{2}-4=0.

Observe que x=1 é uma raíz. As outras serão , portanto, calculadas de

x^{3}+3x^{2}-4=0 \Rightarrow (x-1)(x^{2}+4x+4) = 0 \Rightarrow (x-1)(x+2)^{2}=0.

Assim, os pontos que as curvas se intersectam são equivalentes a x=-2 e x=1.

Veja que neste intervalo a função y=-x^{2} + \frac{4}{3} é sempre maior que y=\frac{x^{3}}{3}.

Logo, a área delimitada pelas curvas será

A=\int_{-2}^{1} \left (-x^{2}+\frac{4}{3}-\frac{x^{3}}{3}  \right )dx.

Agora basta efetuar a integração.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Integrais (áreas) [dúvida]

Mensagempor Russman » Qui Jun 21, 2012 10:58

Você deve calcular A=\frac{9}{4}.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.