por Jhonata » Qua Jun 20, 2012 10:44
Não consigo nada na seguinte questão:
Seja

a região limitada entre

e o eixo-x. Encontre a equação da reta que passa pela origem e que divide

em duas subregiões com áreas iguais.
Eu tentei resolver de muitas formas, mas não consigo progredir nada nessa questão; tudo que consegui fazer foi esboçar o gráfico da função, encontrar o ponto crítico, os pontos de interseção e sua área entre esses pontos
.
" A Matemática é a honra do espírito humano - Leibniz "
-

Jhonata
- Usuário Parceiro

-
- Mensagens: 66
- Registrado em: Sáb Mai 26, 2012 17:42
- Localização: Rio de Janeiro
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenheria Mecânica - UFRJ
- Andamento: cursando
por Russman » Qua Jun 20, 2012 11:13
Seja a a reta uma função

.
A área superior da parábola, que chamarei de

é dada por
![A_{1} = \int_{0}^{k}[ f(x) - g(x)] A_{1} = \int_{0}^{k}[ f(x) - g(x)]](/latexrender/pictures/f17b1f1c0195dc126d2ec2d4488bd2de.png)
,
pois

no intervalo
![[0,k] [0,k]](/latexrender/pictures/6c279203fd44ea566ecb1778414e009b.png)
.
O valor

é onde as funções se intersectam. Assim,

O valor nulo para

ja era conhecido, pois a reta passa pela origem.
A area que sobra, a area 2,

é dada pela soma da area do triângulo e de um pedaço da parábola. Ou então, pela area que sobra.
![A_{2} = \int_{0}^{1} f(x) - A_{1} = \int_{0}^{1} f(x) - \int_{0}^{k} [f(x) - g(x)] A_{2} = \int_{0}^{1} f(x) - A_{1} = \int_{0}^{1} f(x) - \int_{0}^{k} [f(x) - g(x)]](/latexrender/pictures/97f1390260e0b7e58e4f72e556c01893.png)
.
Agora é só fazer

efetuar a integrais e isolar

que você descobre a reta.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Russman » Qua Jun 20, 2012 14:07
Eu fiz as contas aqui e cheguei em
![a = 1 + \frac{1}{\sqrt[3]{2}} a = 1 + \frac{1}{\sqrt[3]{2}}](/latexrender/pictures/d17e3ad76a8bfdb91372291fe9bc66cd.png)
.
Portanto a reta é
![g(x) = (1 + \frac{1}{\sqrt[3]{2}})x g(x) = (1 + \frac{1}{\sqrt[3]{2}})x](/latexrender/pictures/806cf91474aa89565ea9f1d6ded0f2e0.png)
.
Veja se você chega no mesmo resultado.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Área entre curvas. Sen(x) e x³ em [0, pi]. Alguém ajuda?
por vmoura » Dom Abr 02, 2017 17:56
- 0 Respostas
- 2947 Exibições
- Última mensagem por vmoura

Dom Abr 02, 2017 17:56
Cálculo: Limites, Derivadas e Integrais
-
- Área comum as curvas
por Fernandobertolaccini » Qua Jul 23, 2014 22:00
- 0 Respostas
- 995 Exibições
- Última mensagem por Fernandobertolaccini

Qua Jul 23, 2014 22:00
Cálculo: Limites, Derivadas e Integrais
-
- Integrais e área entre curvas
por Victor Mello » Ter Nov 19, 2013 21:58
- 2 Respostas
- 1888 Exibições
- Última mensagem por Victor Mello

Qua Nov 20, 2013 00:28
Cálculo: Limites, Derivadas e Integrais
-
- Área limitada pelas curvas
por Fernandobertolaccini » Qua Jul 23, 2014 22:02
- 0 Respostas
- 1052 Exibições
- Última mensagem por Fernandobertolaccini

Qua Jul 23, 2014 22:02
Cálculo: Limites, Derivadas e Integrais
-
- Área limitada pelas curvas
por Fernandobertolaccini » Qua Jul 23, 2014 22:04
- 1 Respostas
- 1362 Exibições
- Última mensagem por matmatco

Sáb Ago 09, 2014 12:15
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.