• Anúncio Global
    Respostas
    Exibições
    Última mensagem

duvida com a integral

duvida com a integral

Mensagempor gabrielnandi » Qua Mai 30, 2012 18:32

Mais uma integral que nao consigo obter resiltado final
\int_{}^{}{sen^{2}(2x).cos^{4}(2x)}dx
gabrielnandi
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Dom Mai 15, 2011 18:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: Eletronica
Andamento: cursando

Re: duvida com a integral

Mensagempor LuizAquino » Qua Mai 30, 2012 19:54

gabrielnandi escreveu:Mais uma integral que nao consigo obter resiltado final
\int_{}^{}{sen^{2}(2x).cos^{4}(2x)}\,dx


Eu gostaria de lhe dar uma dica para estudar uma integral. Você pode usar um programa para isso! Por exemplo, o SAGE, o Mathematica, o Maple, etc.

Alguns desses programas são disponibilizados também na forma de uma página na internet. É o caso do SAGE Notebook e do Mathematica. Por exemplo, siga os passos abaixo para conferir a resolução da integral.

  1. Acesse a página: http://www.wolframalpha.com/
  2. No campo de entrada, digite:
    Código: Selecionar todos
    integrate ((sin(2x))^2)((cos(2x))^4) dx
  3. Clique no botão de igual ao lado do campo de entrada.
  4. Após a integral ser calculada, clique no botão "Show steps" ao lado do resultado.
  5. Pronto! Agora basta estudar a resolução.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: duvida com a integral

Mensagempor gabrielnandi » Qui Mai 31, 2012 19:03

a resposta a nossa professora ja deu...

mais nao to conseguindo obter a resposta correta... vou denta um pouco mais...
gabrielnandi
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Dom Mai 15, 2011 18:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: Eletronica
Andamento: cursando

Re: duvida com a integral

Mensagempor gabrielnandi » Qui Mai 31, 2012 23:04

ainda nao consegui...
gabrielnandi
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Dom Mai 15, 2011 18:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: Eletronica
Andamento: cursando

Re: duvida com a integral

Mensagempor Russman » Qui Mai 31, 2012 23:10

Se você fizer o que o LuizAquino disse vai encontrar a solução! è só clicar em "Show Steps" e o software te dá todos os passos!
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: duvida com a integral

Mensagempor gabrielnandi » Seg Jun 18, 2012 02:18

nessa resolução,, o softer usa uma formula de redução,... e obtem um M.. como que se obtem esse valor para M ( ele usa m=4 e m=6 em diferentes situações)
gabrielnandi
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Dom Mai 15, 2011 18:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: Eletronica
Andamento: cursando

Re: duvida com a integral

Mensagempor LuizAquino » Ter Jun 19, 2012 10:52

gabrielnandi escreveu:nessa resolução,, o softer usa uma formula de redução,... e obtem um M.. como que se obtem esse valor para M ( ele usa m=4 e m=6 em diferentes situações)


A fórmula de redução usada serve para calcular integrais do tipo \int \cos^m u\, du .

Durante a resolução da integral original, apareceram as integrais \int \cos^4 u\, du (ou seja, nesse caso m = 4) e \int \cos^6 u\, du (ou seja, nesse caso m = 6).

Para obter m, note que basta observar a potência que aparece elevando a função cosseno.

Se desejar estudar mais a respeito de integrais desse tipo, eu gostaria de recomendar as videoaulas "31. Cálculo I - Integral de Potências de Seno ou Cosseno" e "32. Cálculo I - Integral de Produto entre Potências de Seno e Cosseno". Elas estão disponíveis em meu canal no YouTube:

http://www.youtube.com/LCMAquino
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?