por gabrielnandi » Qua Mai 30, 2012 18:32
Mais uma integral que nao consigo obter resiltado final

dx
-
gabrielnandi
- Usuário Ativo

-
- Mensagens: 24
- Registrado em: Dom Mai 15, 2011 18:38
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Eletronica
- Andamento: cursando
por LuizAquino » Qua Mai 30, 2012 19:54
gabrielnandi escreveu:Mais uma integral que nao consigo obter resiltado final

Eu gostaria de lhe dar uma dica para estudar uma integral. Você pode usar um programa para isso! Por exemplo, o
SAGE, o Mathematica, o Maple, etc.
Alguns desses programas são disponibilizados também na forma de uma página na internet. É o caso do
SAGE Notebook e do Mathematica. Por exemplo, siga os passos abaixo para conferir a resolução da integral.
- Acesse a página: http://www.wolframalpha.com/
- No campo de entrada, digite:
- Código: Selecionar todos
integrate ((sin(2x))^2)((cos(2x))^4) dx
- Clique no botão de igual ao lado do campo de entrada.
- Após a integral ser calculada, clique no botão "Show steps" ao lado do resultado.
- Pronto! Agora basta estudar a resolução.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por gabrielnandi » Qui Mai 31, 2012 19:03
a resposta a nossa professora ja deu...
mais nao to conseguindo obter a resposta correta... vou denta um pouco mais...
-
gabrielnandi
- Usuário Ativo

-
- Mensagens: 24
- Registrado em: Dom Mai 15, 2011 18:38
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Eletronica
- Andamento: cursando
por gabrielnandi » Qui Mai 31, 2012 23:04
ainda nao consegui...
-
gabrielnandi
- Usuário Ativo

-
- Mensagens: 24
- Registrado em: Dom Mai 15, 2011 18:38
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Eletronica
- Andamento: cursando
por Russman » Qui Mai 31, 2012 23:10
Se você fizer o que o LuizAquino disse vai encontrar a solução! è só clicar em "Show Steps" e o software te dá todos os passos!
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por gabrielnandi » Seg Jun 18, 2012 02:18
nessa resolução,, o softer usa uma formula de redução,... e obtem um M.. como que se obtem esse valor para M ( ele usa m=4 e m=6 em diferentes situações)
-
gabrielnandi
- Usuário Ativo

-
- Mensagens: 24
- Registrado em: Dom Mai 15, 2011 18:38
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Eletronica
- Andamento: cursando
por LuizAquino » Ter Jun 19, 2012 10:52
gabrielnandi escreveu:nessa resolução,, o softer usa uma formula de redução,... e obtem um M.. como que se obtem esse valor para M ( ele usa m=4 e m=6 em diferentes situações)
A fórmula de redução usada serve para calcular integrais do tipo

.
Durante a resolução da integral original, apareceram as integrais

(ou seja, nesse caso m = 4) e

(ou seja, nesse caso m = 6).
Para obter m, note que basta observar a potência que aparece elevando a função cosseno.
Se desejar estudar mais a respeito de integrais desse tipo, eu gostaria de recomendar as videoaulas "31. Cálculo I - Integral de Potências de Seno ou Cosseno" e "32. Cálculo I - Integral de Produto entre Potências de Seno e Cosseno". Elas estão disponíveis em meu canal no YouTube:
http://www.youtube.com/LCMAquino
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integral] Dúvida com uma integral simples
por Leonardo Ribeiro » Sex Abr 03, 2015 20:02
- 1 Respostas
- 1974 Exibições
- Última mensagem por Leonardo Ribeiro

Sex Abr 03, 2015 21:06
Cálculo: Limites, Derivadas e Integrais
-
- [integral] duvida integral
por lucasdemirand » Ter Nov 26, 2013 17:47
- 0 Respostas
- 843 Exibições
- Última mensagem por lucasdemirand

Ter Nov 26, 2013 17:47
Cálculo: Limites, Derivadas e Integrais
-
- Dúvida em Integral
por Cleyson007 » Ter Fev 28, 2012 17:36
- 5 Respostas
- 2031 Exibições
- Última mensagem por LuizAquino

Qui Mar 01, 2012 16:27
Cálculo: Limites, Derivadas e Integrais
-
- Duvida na Integral
por rodrigo ff » Sex Mar 23, 2012 17:44
- 1 Respostas
- 1199 Exibições
- Última mensagem por DanielFerreira

Sex Mar 23, 2012 19:01
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] - Dúvida
por digsydinner » Ter Mar 27, 2012 10:37
- 3 Respostas
- 1721 Exibições
- Última mensagem por LuizAquino

Sex Mar 30, 2012 00:07
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.