por jann lucca » Sex Jun 15, 2012 19:41
(ESA-85) Uma loja vendeu 2/5 de um peça de tecido e depois vendeu 5/12 do restante. O que sobrou foi vendido por r$1400,00. Sabendo-se que o tecido foi vendido a R$5,00o metro, o comprimento inicial da peça era de:
a)200m
b)400m
c)800m
d)1200m
e)1600m
-
jann lucca
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Sex Mai 11, 2012 17:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Educação Física
- Andamento: cursando
por Russman » Sex Jun 15, 2012 20:57
jann lucca escreveu:(ESA-85) Uma loja vendeu 2/5 de um peça de tecido e depois vendeu 5/12 do restante. O que sobrou foi vendido por r$1400,00. Sabendo-se que o tecido foi vendido a R$5,00o metro, o comprimento inicial da peça era de:
a)200m
b)400m
c)800m
d)1200m
e)1600m
Faça o preço do comprimento inicial da peça ser

. Assim,

.
Você entende como chegar nessa equação?
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por DanielFerreira » Sex Jun 15, 2012 21:03
jann lucca escreveu:(ESA-85) Uma loja vendeu 2/5 de um peça de tecido e depois vendeu 5/12 do restante. O que sobrou foi vendido por r$1400,00. Sabendo-se que o tecido foi vendido a R$5,00o metro, o comprimento inicial da peça era de:
a)200m
b)400m
c)800m
d)1200m
e)1600m
Acho que há algo de errado com o enunciado!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por jann lucca » Sex Jun 15, 2012 22:34
Valeu, Russman! Deu certo aqui! A resposta foi 800m. A equação que eu tava fazendo aqui tava mais ou menos parecida com essa...Agora está claro. Entendi.
-
jann lucca
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Sex Mai 11, 2012 17:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Educação Física
- Andamento: cursando
por DanielFerreira » Sex Jun 15, 2012 23:27
Jann Lucca,
desenvolvendo a equação encontrada pelo Russman, teremos x = 4.000
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Russman » Sex Jun 15, 2012 23:40
Siiim, x= 4000 reais.
Para saber o comprimento basta dividir 4000 reais por 5 reais/metro! Isso calcula 800 m. (:
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por DanielFerreira » Sex Jun 15, 2012 23:58
Russman escreveu:Siiim, x= 4000 reais.
Para saber o comprimento basta dividir 4000 reais por 5 reais/metro! Isso calcula 800 m. (:
Vlw Russman pelo esclarecimento, interpretei erradamente o enunciado.
Me desculpem!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por jvictorsst » Qui Mar 17, 2016 13:57
Alguém desenvolver essa equação não to conseguindo fazer
-
jvictorsst
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Mar 17, 2016 13:53
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- duvidas pra resolver esses exercicios
por simoneribeiro » Qui Set 20, 2012 16:24
- 1 Respostas
- 1614 Exibições
- Última mensagem por MarceloFantini

Qui Set 20, 2012 21:14
Análise Combinatória
-
- [Limite] como resolver esses limites
por Isadora Souza » Seg Jan 07, 2013 15:20
- 1 Respostas
- 1783 Exibições
- Última mensagem por joaofonseca

Seg Jan 07, 2013 19:00
Cálculo: Limites, Derivadas e Integrais
-
- [ESCALONAMENTO] como resolver esses sistemas
por mayconlucas » Seg Nov 09, 2015 09:39
- 2 Respostas
- 3401 Exibições
- Última mensagem por nakagumahissao

Ter Nov 10, 2015 15:31
Álgebra Linear
-
- me ajudem calculos para antecipar parcelas
por MABafi » Dom Jul 18, 2010 23:36
- 0 Respostas
- 1533 Exibições
- Última mensagem por MABafi

Dom Jul 18, 2010 23:36
Matemática Financeira
-
- calculos para funçoes de varias variaveis
por flavio970 » Sex Out 16, 2015 22:25
- 0 Respostas
- 3280 Exibições
- Última mensagem por flavio970

Sex Out 16, 2015 22:25
Cálculo para Funções de Várias Variáveis II
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.