• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral por partes] onde está o erro???

[Integral por partes] onde está o erro???

Mensagempor Fabio Wanderley » Seg Mai 28, 2012 20:21

Olá colegas,

Segue um exercício que não consigo revolvê-lo...

"Ao calcular a integral \int_{}^{}\frac{1}{x}dx, Joãozinho procedeu da seguinte maneira.

Fazendo u = \frac{1}{x}, e dv = dx, podemos tomar v = x, e teremos du = -\frac{1}{x^2}dx.

\int_{}^{}\frac{1}{x}dx = \int_{}^{}udv = uv - \int_{}^{}vdu

= \frac{1}{x}.x-\int_{}^{}x\left(-\frac{1}{x^2} \right)dx = 1 + \int_{}^{}\frac{1}{x}dx

Sendo J = \int_{}^{}\frac{1}{x}dx, temos então J = 1 + J, logo 0 = 1.

Onde está o erro no argumento de Joãozinho?"

Alguém pode me ajudar?
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: [Integral por partes] onde está o erro???

Mensagempor LuizAquino » Ter Mai 29, 2012 12:18

Fabio Wanderley escreveu:"Ao calcular a integral \int_{}^{}\frac{1}{x}dx, Joãozinho procedeu da seguinte maneira.

Fazendo u = \frac{1}{x}, e dv = dx, podemos tomar v = x, e teremos du = -\frac{1}{x^2}dx.

\int_{}^{}\frac{1}{x}dx = \int_{}^{}udv = uv - \int_{}^{}vdu

= \frac{1}{x}.x-\int_{}^{}x\left(-\frac{1}{x^2} \right)dx = 1 + \int_{}^{}\frac{1}{x}dx

Sendo J = \int_{}^{}\frac{1}{x}dx, temos então J = 1 + J, logo 0 = 1.

Onde está o erro no argumento de Joãozinho?"


Fabio Wanderley escreveu:Segue um exercício que não consigo revolvê-lo...

Alguém pode me ajudar?


O erro está no fato que Joãozinho esqueceu das constantes que aparecem no desenvolver da integração por partes.

Quando estamos resolvendo integração por partes, aparecem duas constantes durante o processo, que no final são "resumidas" em uma só.

Vejamos um exemplo. Suponha que você deseja calcular:

\int x\cos x \, dx

Fazendo u = x e dv = \cos x \, dx , temos que du = dx e v = \,\textrm{sen}\,x . Temos então que:

\int x\cos x \, dx = x\,\textrm{sen}\,x + c_1 - \int \,\textrm{sen}\,x \,dx

\int x\cos x \, dx = x\,\textrm{sen}\,x + c_1 - \left(-\cos x + c_2\right)

\int x\cos x \, dx = x\,\textrm{sen}\,x + c_1 + \cos x - c_2

Como c_1 e c_2 são constantes, podemos chamar c_1-c_2 de uma outra constante. Digamos que vamos chamar de c. Ficamos então com:

\int x\cos x \, dx = x\,\textrm{sen}\,x + \cos x + c

Com a prática, acabamos "ignorando" essas constantes em cada passo do desenvolvimento, sendo que apenas colocamos uma constante no final das contas. Mas é justamente esse fato de ignorar as constantes que fez Joãozinho errar. Ele deveria ter escrito algo como:

\int \frac{1}{x}\,dx = \frac{1}{x}\cdot x + c_1 - \int x\left(-\frac{1}{x^2} \right)\,dx = 1 + c_1 + \int\frac{1}{x}\,dx

Se ele tivesse agora definido que J = \int \frac{1}{x}\,dx , ele poderia escrever que J  = 1 + c_1 + J . Nesse contexto, ele iria concluir que c_1 = -1 . Se ele tivesse agora substituído essa constante no desenvolvimento da integral, ele teria chegado a uma conclusão óbvia: J = J.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Integral por partes] onde está o erro???

Mensagempor Fabio Wanderley » Ter Mai 29, 2012 13:42

Muito obrigado, professor Luiz Aquino!

Eu estava fazendo os passos desse exercício várias e várias vezes e não identificava esse erro. Realmente eu estava tentando resolver de forma muito mecânica... agora ficou claro! :-D
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.