• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Polinômios - dúvida

Polinômios - dúvida

Mensagempor iceman » Dom Mai 27, 2012 16:07

Boa tarde, gostaria que me ajudasse nessa questão abaixo, agradeceria muito pela gentileza.
Determinar respectivamente na equação:
(X-5)^5.(X-2)^2.(X-3)^3=0

I) O grau da Equação
II) O Conjunto Verdade

a) 5 e {5,2,3}
b) 10 e {0,2,3}
c) 10 e {5,2,3}
d) 10 e {-5,-2,-3}
e) Nenhuma das Alternativas
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Polinômios - dúvida

Mensagempor DanielFerreira » Dom Mai 27, 2012 16:17

iceman escreveu:Boa tarde, gostaria que me ajudasse nessa questão abaixo, agradeceria muito pela gentileza.
Determinar respectivamente na equação:
(X-5)^5.(X-2)^2.(X-3)^3=0

I) O grau da Equação
II) O Conjunto Verdade

a) 5 e {5,2,3}
b) 10 e {0,2,3}
c) 10 e {5,2,3}
d) 10 e {-5,-2,-3}
e) Nenhuma das Alternativas

(x^5 +... - 5^5).(x^2 - 4x + 4).(x^3 + ... - 27) = x^{5 + 2 + 3} + ...

(x^5 +... - 5^5).(x^2 - 4x + 4).(x^3 + ... - 27) = x^{10} + ...

Portanto, grau 10.

As raízes são obtidas igualando as bases a zero.
x - 5 = 0
x = 5

x - 2 = 0
x = 2

x - 3 = 0
x = 3
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Polinômios - dúvida

Mensagempor iceman » Dom Mai 27, 2012 17:17

danjr5 escreveu:
iceman escreveu:Boa tarde, gostaria que me ajudasse nessa questão abaixo, agradeceria muito pela gentileza.
Determinar respectivamente na equação:
(X-5)^5.(X-2)^2.(X-3)^3=0

I) O grau da Equação
II) O Conjunto Verdade

a) 5 e {5,2,3}
b) 10 e {0,2,3}
c) 10 e {5,2,3}
d) 10 e {-5,-2,-3}
e) Nenhuma das Alternativas

(x^5 +... - 5^5).(x^2 - 4x + 4).(x^3 + ... - 27) = x^{5 + 2 + 3} + ...

(x^5 +... - 5^5).(x^2 - 4x + 4).(x^3 + ... - 27) = x^{10} + ...

Portanto, grau 10.

As raízes são obtidas igualando as bases a zero.
x - 5 = 0
x = 5

x - 2 = 0
x = 2

x - 3 = 0
x = 3



Obrigado por me ajudar :D
Só fiquei com algumas dúvidas, segue a baixo:
- O que é esses "..." na equação: (x^5 +... - 5^5)
- Por que aqui não resolveu 5^5 : (x^5 +... - 5^5) e nos outros você resolveu os expoentes?

Valeu mais uma vez, Agradeço por me ajudar :)
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Polinômios - dúvida

Mensagempor DanielFerreira » Dom Mai 27, 2012 18:16

Iceman,
- Só p/ mostrar o primeiro termo do polinômio;
- É que para saber o grau do polinômio, precisamos apenas saber o grau do primeiro termo!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Polinômios - dúvida

Mensagempor iceman » Dom Mai 27, 2012 18:19

danjr5 escreveu:Iceman,
- Só p/ mostrar o primeiro termo do polinômio;
- É que para saber o grau do polinômio, precisamos apenas saber o grau do primeiro termo!


Blz, vlw, Tem como você me ajudar em outras questões?
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Polinômios - dúvida

Mensagempor DanielFerreira » Dom Mai 27, 2012 18:23

Se estiver ao meu alcance, ajudarei com certeza!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}