• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Domínio da função

Domínio da função

Mensagempor paola-carneiro » Sex Mai 04, 2012 12:50

Saudações pessoal!
Sou novo aqui no fórum, e tô tendo dificuldades com a a mati~éria de cálculo na universidade, então vcs vão me ver muito por aqui ;D
A de hj é bem simples:
Determine o domínio da função
y=\sqrt[2]{\frac{x-1}{7-x}}

O que eu fiz:
1- x deve ser maior ou igual a zero, pois a raiz é par
x-1\geq0
x\geq1

2 x deve ser maior que zero pois está em uma raiz par e no denominador
7-x>0
-x>-7
x<7

Juntando tudo:
D=[1,7[

E aí, meu raciocínio foi correto?
paola-carneiro
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qui Abr 05, 2012 15:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Domínio da função

Mensagempor MarceloFantini » Sáb Mai 05, 2012 00:19

Quero lembrar que o domínio sempre é especificado, e não "calculado". Porém, em questões assim, examinadores estão interessados no maior domínio possível, e neste caso podemos descobrir por meio das propriedades da função.

Aqui devemos ter que todo o radicando deve ser positivo ou zero, logo \frac{x-1}{7-x} \geq 0.

Para que isto aconteça, devemos ter que numerador e denominador sejam positivos ou ambos sejam negativos. Encontrando quando são positivos, vemos que numerador será quando x \geq 1 e denominador quando x<7, logo I_1 = [1,7[.

Para que ambos sejam negativos, devemos ter x<1 e x>7, o que é impossível. Portanto a resposta é S = [1,7[.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Domínio da função

Mensagempor paola-carneiro » Sáb Mai 05, 2012 09:51

Muito obrigado Marcelo
paola-carneiro
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qui Abr 05, 2012 15:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.