• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Domínio da função

Domínio da função

Mensagempor paola-carneiro » Sex Mai 04, 2012 12:50

Saudações pessoal!
Sou novo aqui no fórum, e tô tendo dificuldades com a a mati~éria de cálculo na universidade, então vcs vão me ver muito por aqui ;D
A de hj é bem simples:
Determine o domínio da função
y=\sqrt[2]{\frac{x-1}{7-x}}

O que eu fiz:
1- x deve ser maior ou igual a zero, pois a raiz é par
x-1\geq0
x\geq1

2 x deve ser maior que zero pois está em uma raiz par e no denominador
7-x>0
-x>-7
x<7

Juntando tudo:
D=[1,7[

E aí, meu raciocínio foi correto?
paola-carneiro
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qui Abr 05, 2012 15:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Domínio da função

Mensagempor MarceloFantini » Sáb Mai 05, 2012 00:19

Quero lembrar que o domínio sempre é especificado, e não "calculado". Porém, em questões assim, examinadores estão interessados no maior domínio possível, e neste caso podemos descobrir por meio das propriedades da função.

Aqui devemos ter que todo o radicando deve ser positivo ou zero, logo \frac{x-1}{7-x} \geq 0.

Para que isto aconteça, devemos ter que numerador e denominador sejam positivos ou ambos sejam negativos. Encontrando quando são positivos, vemos que numerador será quando x \geq 1 e denominador quando x<7, logo I_1 = [1,7[.

Para que ambos sejam negativos, devemos ter x<1 e x>7, o que é impossível. Portanto a resposta é S = [1,7[.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Domínio da função

Mensagempor paola-carneiro » Sáb Mai 05, 2012 09:51

Muito obrigado Marcelo
paola-carneiro
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qui Abr 05, 2012 15:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.