por jvpetrucci » Qui Mai 03, 2012 19:14
[/tex]A questão é a seguinte
Por um jantar para um grupo de amigos, um restaurante cobrou R$ 240,00, mas quatro dessas pessoas não tinha dinheiro para contribuir com a despesa.
Essa atitude obrigou cada uma das demais pessoas a pagar R$ 5,00 além da parte que lhe caberia se todos participassem da divisão da conta.
Quantos eram os amigos?
Por favor me ajudem vale um ponto.
Não é uma questão simples por que aqui em meu livro ela tem 18 linhas para fazer a conta.
Eu fiz assim, não sei se ta certo
x=nº de amigos
![\frac{240}{x-4}=\frac{240}{x+5}
240x=240x-960+5x²-20x
5x²-20x-960=0
x²-4x-192=0
x= 4+-\sqrt[2]{16}+ \frac{768}{2}
x= 4+-\frac{28}{2}
x= 4+\frac{28}{2} = \frac{32}{2}=16 \frac{240}{x-4}=\frac{240}{x+5}
240x=240x-960+5x²-20x
5x²-20x-960=0
x²-4x-192=0
x= 4+-\sqrt[2]{16}+ \frac{768}{2}
x= 4+-\frac{28}{2}
x= 4+\frac{28}{2} = \frac{32}{2}=16](/latexrender/pictures/e7b2c0afcecb1fb08c2865e5034fdfe6.png)
Esse "²" deve ser pra elevar pq eu nao coloquei isso espero q vcs entendam minha forma de fazer
-
jvpetrucci
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qui Mai 03, 2012 18:26
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: Informática, montagem e manutenção
- Andamento: formado
por Russman » Qui Mai 03, 2012 20:35
Seja o número de amigos

.
Se todos os amigos pagassem então o valor

que cada um teria de pagar é calculado por

.
Porém, somente

amigos pagaram. Então, os

amigos pagaram um valor

cada dado por

.
Do problema identificamos que

. Portanto,




.
Esta equação tem como solução
![x = \frac{4+-\sqrt[]{16+4.192}}{2} = \left\{\begin{matrix}
x_{1} = \frac{4+28}{2} = 16\\
x_{2} = \frac{4-28}{2} = -12
\end{matrix}\right. x = \frac{4+-\sqrt[]{16+4.192}}{2} = \left\{\begin{matrix}
x_{1} = \frac{4+28}{2} = 16\\
x_{2} = \frac{4-28}{2} = -12
\end{matrix}\right.](/latexrender/pictures/b8975046d497897455e8ddfe487a8618.png)
.
Como só nos interessa a solução positiva, o número de amigos eram então

.
Veja que

, como se era esperado.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por jvpetrucci » Qui Mai 03, 2012 20:48
Russman escreveu:Seja o número de amigos

.
Se todos os amigos pagassem então o valor

que cada um teria de pagar é calculado por

.
Porém, somente

amigos pagaram. Então, os

amigos pagaram um valor

cada dado por

.
Do problema identificamos que

. Portanto,




.
Esta equação tem como solução
![x = \frac{4+-\sqrt[]{16+4.192}}{2} = \left\{\begin{matrix}
x_{1} = \frac{4+28}{2} = 16\\
x_{2} = \frac{4-28}{2} = -12
\end{matrix}\right. x = \frac{4+-\sqrt[]{16+4.192}}{2} = \left\{\begin{matrix}
x_{1} = \frac{4+28}{2} = 16\\
x_{2} = \frac{4-28}{2} = -12
\end{matrix}\right.](/latexrender/pictures/b8975046d497897455e8ddfe487a8618.png)
.
Como só nos interessa a solução positiva, o número de amigos eram então

.
Veja que

, como se era esperado.
Muito obrigado, nossa eu to doido pra ganha esse 1 ponto, porque la na sala eu sou o primeiro da turma ai tem que tira nota boa e consegui os pontos
Alem de que eu no bimestre passado nao fui muito bem nas provas.
Eu só não to conseguindo entender essa parte aqui
Esta equação tem como solução
![x = \frac{4+-\sqrt[]{16+4.192}}{2} = \left\{\begin{matrix}
x_{1} = \frac{4+28}{2} = 16\\
x_{2} = \frac{4-28}{2} = -12
\end{matrix}\right. x = \frac{4+-\sqrt[]{16+4.192}}{2} = \left\{\begin{matrix}
x_{1} = \frac{4+28}{2} = 16\\
x_{2} = \frac{4-28}{2} = -12
\end{matrix}\right.](/latexrender/pictures/b8975046d497897455e8ddfe487a8618.png)
.
Como só nos interessa a solução positiva, o número de amigos eram então

de onde vc tiro esse 28 dessa raiz?
-
jvpetrucci
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qui Mai 03, 2012 18:26
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: Informática, montagem e manutenção
- Andamento: formado
por Russman » Qui Mai 03, 2012 21:15
Veja que
![\sqrt[]{16 + 4.192} = \sqrt[]{784} = 28 \sqrt[]{16 + 4.192} = \sqrt[]{784} = 28](/latexrender/pictures/b27a894e743fca749970a4f816038a95.png)
.
(:
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por jvpetrucci » Qui Mai 03, 2012 21:23
Russman escreveu:Veja que
![\sqrt[]{16 + 4.192} = \sqrt[]{784} = 28 \sqrt[]{16 + 4.192} = \sqrt[]{784} = 28](/latexrender/pictures/b27a894e743fca749970a4f816038a95.png)
.
(:
O q vc fez?
e pq eu to tentando fazer mas nao to conseguindo
vc tiro a raiz de um e de outro?
-
jvpetrucci
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qui Mai 03, 2012 18:26
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: Informática, montagem e manutenção
- Andamento: formado
por Russman » Qui Mai 03, 2012 21:26
Nãao!

"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por jvpetrucci » Qui Mai 03, 2012 21:30
Russman escreveu:Nãao!

Ai não entendi de onde vc tiro o 768
Eu quero sabe se vc fatoro oq vc fez?
pq vc bota desse jeito ai eu fico sem entender
-
jvpetrucci
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qui Mai 03, 2012 18:26
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: Informática, montagem e manutenção
- Andamento: formado
por jvpetrucci » Qui Mai 03, 2012 21:31
Russman escreveu:Nãao!

e o 784 nao entendi como vc fez
Eu queria q vc explicasse q processo vc uso
pq alem de estar fazer o exercicio eu estou estudando ja para o teste e prova
-
jvpetrucci
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qui Mai 03, 2012 18:26
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: Informática, montagem e manutenção
- Andamento: formado
por Russman » Qui Mai 03, 2012 21:42

Isto é

somado com

vezes

.

.
Eu usei a fórmula da solução da equação de 2° grau! Você deve conhecer.

"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por jvpetrucci » Qui Mai 03, 2012 21:43
Russman escreveu:
Isto é

somado com

vezes

.

.
Eu usei a fórmula da solução da equação de 2° grau! Você deve conhecer.

Ata vc usou o processo de baskaras nao foi?
-
jvpetrucci
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qui Mai 03, 2012 18:26
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: Informática, montagem e manutenção
- Andamento: formado
por Russman » Qui Mai 03, 2012 21:59
Isto, isto!
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por jvpetrucci » Qui Mai 03, 2012 22:00
Obrigado por ter me ajudado e explicado essa questão
-
jvpetrucci
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qui Mai 03, 2012 18:26
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: Informática, montagem e manutenção
- Andamento: formado
por Russman » Qui Mai 03, 2012 22:35
Não por isso. (:
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Problemas de Equaçoes]
por R0nny » Sáb Mai 04, 2013 15:01
- 2 Respostas
- 3354 Exibições
- Última mensagem por R0nny

Sáb Mai 04, 2013 19:51
Equações
-
- problemas com equacoes de 1 grau
por luanxd » Qua Jan 27, 2010 23:14
- 2 Respostas
- 2220 Exibições
- Última mensagem por luanxd

Sáb Jan 30, 2010 23:31
Polinômios
-
- Problemas com equações biquadradas
por Viivii » Qua Ago 24, 2011 23:05
- 4 Respostas
- 3862 Exibições
- Última mensagem por Neperiano

Qui Ago 25, 2011 17:59
Sistemas de Equações
-
- Problemas matemáticos envolvendo equações.
por mynameisnandoo » Qui Out 06, 2011 14:57
- 0 Respostas
- 2558 Exibições
- Última mensagem por mynameisnandoo

Qui Out 06, 2011 14:57
Tópicos sem Interação (leia as regras)
-
- [Problemas de Valor Inicial] Equações Diferenciais
por mayconf » Ter Abr 15, 2014 18:24
- 1 Respostas
- 2019 Exibições
- Última mensagem por Russman

Ter Abr 15, 2014 22:28
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.