por CarolMarques » Qui Mai 03, 2012 20:33
Olá, Tenho dificuldade na interpretações de problemas sobre conicas como por exemplo este:
O teto de um saguao com 10 m de largura tem a forma de uma semi-elipse com 9 m de altura no centro e 6 m de altura nas paredes laterais.Ache a altura do teto a 2m de cada parede.
Não consigo definir os parametros da elipse.Acredito q pelo menos um deles seja 9.Por favor me ajudem.
-
CarolMarques
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Qui Mai 03, 2012 20:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por Russman » Qui Mai 03, 2012 20:39
Não consegui identificar a forma. ;/
Não tem figura?
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por CarolMarques » Qui Mai 03, 2012 21:13
Não. É só o enunciado =/.
-
CarolMarques
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Qui Mai 03, 2012 20:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por Russman » Qui Mai 03, 2012 21:19
Acho que eu entendi! O teto é como o de uma capela ou abadia. Vou tentar reproduzir aqui e veja se você concorda. Ja posto.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Russman » Qui Mai 03, 2012 21:45
Acho q o esboço problema é este!
- Anexos
-

- ScreenHunter_01 May. 03 20.37.gif (6.63 KiB) Exibido 3145 vezes
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Russman » Qui Mai 03, 2012 21:58
Para esta elipse veja que a soma dos semi eixos maiores é 10 e o semi eixo menor é 9-6 = 3. Portanto, chamando de y um eixo vertical e de x( a variável que eu chamei de x vamos trocar para h, ok?) um horizontal, a equação dessa elipse é

.
Assim, para x= -3 ou x = 3 ( que é o equivalente a 2 m das paredes), temos
![\frac{{3}^{2}}{25} + \frac{{y}^{2}}{9} = 1 \Rightarrow y = \pm \sqrt[]{\frac{144}{25}} = \pm \frac{12}{5} = 2,4 \frac{{3}^{2}}{25} + \frac{{y}^{2}}{9} = 1 \Rightarrow y = \pm \sqrt[]{\frac{144}{25}} = \pm \frac{12}{5} = 2,4](/latexrender/pictures/ad45a20828c97341ab49e9edd72af916.png)
.
Portanto,

.
(:
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por CarolMarques » Qui Mai 03, 2012 22:06
É isso mesmo!!Entendi!Muito Obrigadaa!!
-
CarolMarques
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Qui Mai 03, 2012 20:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Cônicas] duvida.
por Fabricio dalla » Qui Dez 01, 2011 12:32
- 5 Respostas
- 3864 Exibições
- Última mensagem por TheoFerraz

Sex Dez 09, 2011 16:01
Geometria Analítica
-
- [Cônicas] Dúvida exerc. elipse
por MrJuniorFerr » Qua Out 31, 2012 12:58
- 1 Respostas
- 1529 Exibições
- Última mensagem por young_jedi

Qua Out 31, 2012 21:00
Geometria Analítica
-
- Cônicas - Elipse - Só uma dúvida simples
por samra » Sex Jan 24, 2014 01:39
- 2 Respostas
- 1680 Exibições
- Última mensagem por samra

Sex Jan 24, 2014 19:21
Geometria Analítica
-
- Geometria Analítica [Dúvida] sobre cônicas
por pablohas » Sáb Dez 04, 2010 12:55
- 6 Respostas
- 5702 Exibições
- Última mensagem por pablohas

Seg Dez 06, 2010 20:17
Geometria Analítica
-
- [Cônicas]Retas tangentes à cônicas
por Hopkins » Ter Fev 28, 2017 22:39
- 0 Respostas
- 1522 Exibições
- Última mensagem por Hopkins

Ter Fev 28, 2017 22:39
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.