• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivadas] Problema na "prova" das regras operatórias

[Derivadas] Problema na "prova" das regras operatórias

Mensagempor Subject Delta » Qua Abr 25, 2012 17:37

Olá,acabei de me registrar no fórum e espero aprender algo e ser de alguma ajuda por aqui.
Vamos à minha dúvida:

Estava vendo alguns vídeos do Canal do LCMAquino(http://www.youtube.com/user/LCMAquino) e fiquei "empacado" em exatamente uma parte desse vídeo:(http://www.youtube.com/watch?v=P4nYv6p8DQc),que mostra as regras operatórias das derivadas e suas respectivas demonstrações.

Minha dúvida foi exatamente nessa parte:
Imagem
Como o denominador "passou" de 'h' para hg(x+h) g(x)? Digo,qual foi a operação exata que ele fez nessa parte?

Sei que deve ser uma dúvida boba,mas não gosto de deixar nenhuma dúvida no ar e muito menos de "decorar" algo. :-P

Enfim,espero que eu tenha explicado claramente! Abraços e obrigado desde já. ;)
Avatar do usuário
Subject Delta
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Abr 25, 2012 17:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: [Derivadas] Problema na "prova" das regras operatórias

Mensagempor Russman » Qua Abr 25, 2012 20:05

Veja que quando se opera o numerador do limite se obtem uma fração de denominador g(x).g(x+h). Como esta fração esta sendo dividida ainda por h o denominador seja o produto de h com g(x).g(x+h).
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Derivadas] Problema na "prova" das regras operatórias

Mensagempor Subject Delta » Qua Abr 25, 2012 21:23

Russman escreveu:Veja que quando se opera o numerador do limite se obtem uma fração de denominador g(x).g(x+h). Como esta fração esta sendo dividida ainda por h o denominador seja o produto de h com g(x).g(x+h).

Realmente,uma dúvida boba.
MUITO obrigado pela resposta. ;)

Abraços!
Avatar do usuário
Subject Delta
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Abr 25, 2012 17:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.