por brunojorge29 » Seg Abr 23, 2012 11:21
![\int_{0}^{4}\frac{\sqrt[2]{{x}^{4}+1}}{{x}^{2}} \int_{0}^{4}\frac{\sqrt[2]{{x}^{4}+1}}{{x}^{2}}](/latexrender/pictures/0dfb19868b27e566148ca9a0ce2254cb.png)
parei neste ponto, estou tentando calcular o comprimento de um arco
se puderem ajudar agradeço...
-
brunojorge29
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sex Set 30, 2011 09:13
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por Russman » Seg Abr 23, 2012 19:44
Brunojorge29, acredito que esta integral está mtu complicada para o calculo do comprimento de um arco. Tente postar o problema completo, pois talvez vc tenha interpretado algo errado.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por brunojorge29 » Seg Abr 23, 2012 20:57
Calcule o comprimento do arco de

onde os pontos vao de 0,4 a 4.
Por favor essa é uma integral muito dificil.
Vcs sao os unicos que podem me ajudar a resolver esse calculo.
-
brunojorge29
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sex Set 30, 2011 09:13
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por Russman » Seg Abr 23, 2012 22:32
A integral para este cálculo é
![S=\int_{x=a}^{x=b}\sqrt[]{1+\frac{1}{{x}^{4}}} dx S=\int_{x=a}^{x=b}\sqrt[]{1+\frac{1}{{x}^{4}}} dx](/latexrender/pictures/a70a00001cae1894dafb4937cc5b50e3.png)
.
Bem complicado. Só te digo que em

a função não se define assim um dos limites de integração não pode ser

.
Da uma olhada aqui:
http://www.wolframalpha.com/input/?i=in ... %2F2%29+dx
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- comprimento do arco
por liviabgomes » Seg Mai 30, 2011 16:11
- 10 Respostas
- 5819 Exibições
- Última mensagem por liviabgomes

Qua Jun 01, 2011 15:03
Cálculo: Limites, Derivadas e Integrais
-
- comprimento de arco
por manuoliveira » Ter Out 23, 2012 19:43
- 0 Respostas
- 1228 Exibições
- Última mensagem por manuoliveira

Ter Out 23, 2012 19:43
Cálculo: Limites, Derivadas e Integrais
-
- comprimento do arco
por VenomForm » Seg Mai 20, 2013 13:29
- 0 Respostas
- 1166 Exibições
- Última mensagem por VenomForm

Seg Mai 20, 2013 13:29
Cálculo: Limites, Derivadas e Integrais
-
- Comprimento do arco!! Urgente!!
por manuoliveira » Ter Out 23, 2012 20:34
- 4 Respostas
- 3274 Exibições
- Última mensagem por manuoliveira

Ter Out 23, 2012 21:43
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Comprimento de Arco
por klueger » Qui Mar 21, 2013 10:19
- 5 Respostas
- 3169 Exibições
- Última mensagem por Russman

Qui Mar 21, 2013 12:54
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Conjunto dos números racionais.
Autor:
scggomes - Sex Fev 18, 2011 10:38
Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:
Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?
Grata.
Assunto:
Conjunto dos números racionais.
Autor:
MarceloFantini - Sex Fev 18, 2011 12:27

Assunto:
Conjunto dos números racionais.
Autor:
scggomes - Sex Fev 18, 2011 12:55
também pensei que fosse assim, mas a resposta é

.
Obrigada Fantini.
Assunto:
Conjunto dos números racionais.
Autor:
MarceloFantini - Sex Fev 18, 2011 13:01
Como

:
O que você fez?
Assunto:
Conjunto dos números racionais.
Autor:
scggomes - Sex Fev 18, 2011 16:17
eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.
Obrigada.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.