• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculo do comprimento do arco.

Integral Definida, por favor ajudem

Mensagempor brunojorge29 » Seg Abr 23, 2012 11:21

\int_{0}^{4}\frac{\sqrt[2]{{x}^{4}+1}}{{x}^{2}}

parei neste ponto, estou tentando calcular o comprimento de um arco
se puderem ajudar agradeço...
brunojorge29
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Set 30, 2011 09:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Integral Definida, por favor ajudem

Mensagempor Russman » Seg Abr 23, 2012 19:44

Brunojorge29, acredito que esta integral está mtu complicada para o calculo do comprimento de um arco. Tente postar o problema completo, pois talvez vc tenha interpretado algo errado.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Calculo do comprimento do arco.

Mensagempor brunojorge29 » Seg Abr 23, 2012 20:57

Calcule o comprimento do arco de \frac{1}{x} onde os pontos vao de 0,4 a 4.

Por favor essa é uma integral muito dificil.
Vcs sao os unicos que podem me ajudar a resolver esse calculo.
brunojorge29
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Set 30, 2011 09:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Calculo do comprimento do arco.

Mensagempor Russman » Seg Abr 23, 2012 22:32

A integral para este cálculo é

S=\int_{x=a}^{x=b}\sqrt[]{1+\frac{1}{{x}^{4}}} dx .

Bem complicado. Só te digo que em x=0 a função não se define assim um dos limites de integração não pode ser 0.

Da uma olhada aqui: http://www.wolframalpha.com/input/?i=in ... %2F2%29+dx
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: