• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo III] - Teorema de Stokes

[Cálculo III] - Teorema de Stokes

Mensagempor Feliperpr » Sáb Abr 21, 2012 16:08

Calcule:
\oint_{}^{} x dx + (x+y) dy + (x+y+z) dz, onde C é a curva das equações paramétricas x = a sen (t) ; y = a cos (t); z = a (sen (t) + cos (t), com z maior igual a 0 e menor igual a 2 pi!

Não consegui determinar o parâmetro 'a' e acabei caindo em integral dupla de -y+x+1 dx dy sem conseguir determinar os limites de integração!
Alguém sabe?
Feliperpr
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Abr 21, 2012 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Cálculo III] - Teorema de Stokes

Mensagempor Russman » Sáb Abr 21, 2012 17:50

Feliperpr escreveu:Calcule:
\oint_{}^{} x dx + (x+y) dy + (x+y+z) dz, onde C é a curva das equações paramétricas x = a sen (t) ; y = a cos (t); z = a (sen (t) + cos (t), com z maior igual a 0 e menor igual a 2 pi!

Não consegui determinar o parâmetro 'a' e acabei caindo em integral dupla de -y+x+1 dx dy sem conseguir determinar os limites de integração!
Alguém sabe?


Para tanto é necessário que você faça com que a integral seja efetuada ao longo dos pontos da curva, isto é, substitua as variáveis x,y e z por suas parametrizações!
Desta forma teremos uma integral dependente unicamente do parametro t que, por isso, pode ser calculada. Veja que

\oint_{}^{} x dx + (x+y) dy + (x+y+z) dz = \oint_{}^{}{a}^{2}(\frac{5}{2}cos(2t) - \frac{1}{2}) dt

utilizando
x = a.sin(t)\rightarrow dx = a.cos(t) dt
y = a.cos(t) \rightarrow dy = -a.sin(t) dt
z = x+y \rightarrow dz = dx + dy \rightarrow a(cos(t) - sin(t)) dt

e as identidades trigonométricas {sin(t)}^{2} = \frac{1}{2}(1 - cos(2t)) e {cos(t)}^{2}-{sin(t)}^{2}=cos(2t).

Agora temos de identificar os limites de integração. Na questão não é o t que varia de 0 a 2pi ?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Cálculo III] - Teorema de Stokes

Mensagempor Russman » Sáb Abr 21, 2012 18:51

Se t varia de 0 a 2pi, então temos

\int_{0}^{2\pi} \frac{{a}^{2}}{2}(5cos(2t) -1) =\frac{{a}^{2}}{2}(\frac{5}{2}sin(2t) - t)[t=0,t=2\pi
] =-\pi{a}^{2}

Veja que esse processo não é o sugerido pelo Teorema de Stokes! Para tanto é necessário identificar o campo vetorial e a superfície de integração. Fazendo isto você obtem o mesmo resultado. Eu fiz aqui. Se quiser posso postar.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Cálculo III] - Teorema de Stokes

Mensagempor Feliperpr » Sáb Abr 21, 2012 18:54

Nossa cara, muito obrigado de verdade! :)
Se você puder postar, eu agradeço! Mas já me ajudou muito mesmo! ;)
Feliperpr
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Abr 21, 2012 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Cálculo III] - Teorema de Stokes

Mensagempor Russman » Sáb Abr 21, 2012 19:14

O Teorema de Stokes afirma que

I = {\oint_{}^{}}_{C}\overrightarrow{F}\cdot d\overrightarrow{r} = {\int_{}^{}\int_{}^{}}_{S} \bigtriangledown \times \overrightarrow{F}\cdot \overrightarrow{n} dS

que ainda pode ser escrito como

I = {\int_{}^{}\int_{}^{}}_{R} \bigtriangledown \times \overrightarrow{F}\cdot(\pm\bigtriangledown \cdot G ) dR.

Pela integral original vemos que
\overrightarrow{F} = x \widehat{i} + (x+y) \widehat{j}+ (x+y+z)\widehat{k} \Rightarrow \bigtriangledown \times \overrightarrow{F}=\widehat{i}-\widehat{j}+\widehat{k}
G = z - x - y \Rightarrow \bigtriangledown \cdot G = -\widehat{i}-\widehat{j}+\widehat{k}

Como convencionamos orientação positiva para fora da superfície de integração usaremos\bigtriangledown \cdot G =-( -\widehat{i}-\widehat{j}+\widehat{k}). Assim,

I = {\int_{}^{}\int_{}^{}}_{R} \bigtriangledown \times \overrightarrow{F}\cdot(-\bigtriangledown \cdot G ) dR = {\int_{}^{}\int_{}^{}}_{R} (-1) dR = -R = -\pi{a}^{2}.

(:
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Cálculo III] - Teorema de Stokes

Mensagempor Feliperpr » Sáb Abr 21, 2012 19:33

Não tenho nem como te agradecer! Muito obrigado mesmo! ;)
Feliperpr
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Abr 21, 2012 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59