• Anúncio Global
    Respostas
    Exibições
    Última mensagem

CEFET

CEFET

Mensagempor Thulio_Parazi » Qui Abr 19, 2012 11:30

Em uma circunferência de equação x² + y² – 6x – 4y + 9 = 0,
está inscrito um quadrado cujos lados são paralelos aos eixos
cartesianos. A área desse quadrado vale :
Como faço pra achar os vértices do quadrado?
Thulio_Parazi
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qui Abr 05, 2012 11:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: CEFET

Mensagempor fraol » Qui Abr 19, 2012 13:51

Vamos rearranjar a equação dada: x^2 + y^2 - 6x - 4y + 9 = 0

Assim:

x^2 - 6x + 9 + y^2  - 4y  + 4 - 4 = 0 ( Aqui + 4 - 4 foi usado para completar um quadrado perfeito em relação a y )

Usando os quadrados perfeitos em x e y, a expressão se torna:

(x - 3)^2 + (y - 2)^2  - 4 = 0 \iff (x - 3)^2 + (y - 2)^2 = 4 .

Nessa expressão vemos que o centro da circunferência é O=(3,2) e que o raio é igual a \sqrt{4} = 2 .

Como o raio é 2, então a diagonal do quadrado inscrito é igual 2.Raio = 2.2 = 4 .

Se você chamar de L o lado do quadrado inscrito, por Pitágoras você obterá que 2.L^2 = (Diagonal)^2 .

Então 2.L^2 = (4)^2 \iff 2L^2 = 16 \iff L^2 = 8 . Note que L^2 é a área do quadrado inscrito.

Captou?

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: CEFET

Mensagempor Thulio_Parazi » Qui Abr 19, 2012 14:57

CAPITEI,MAS AQUI COMO QUE FICARIA O DESENHO DO PROBLEMA.?
TEM COMO VOCÊ ME AJUDAR A FAZER?
Thulio_Parazi
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qui Abr 05, 2012 11:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: CEFET

Mensagempor fraol » Qui Abr 19, 2012 23:38

Existem infinitos quadrados inscritos nessa circunferência.

Um deles pode ser desenhado a partir dos seguintes vértices:

1) Partindo do Centro O=(3,2), mantendo y=2 fixo, soma-se o raio=2 ao x=3 e você obtém o ponto A=(5,2).

2) Partindo do Centro O=(3,2), mantendo x=3 fixo, soma-se o raio=2 ao y=2 e você obtém o ponto B=(3,4).

3) Partindo do Centro O=(3,2), mantendo y=2 fixo, subtraindo-se o raio=2 do x=3 e você obtém o ponto C=(1,2).

4) Partindo do Centro O=(3,2), mantendo x=3 fixo, subtraindo-se o raio=2 do y=2 e você obtém o ponto D=(3,0).

O raciocínio usado acima é equivalente a desenhar quatro raios, a partir do centro, formando uma cruz. Ligando as pontas dessa cruz, você obtém um quadrado.

Para completar, se você quiser, basta por a ponta seca de um compasso no centro O, abrir a ponta do compasso até um dos vértices e traçar a circunferência.


.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?