por Cleyson007 » Sex Abr 13, 2012 23:40
Boa noite a todos!
Esboçe a região de integração da seguinte integral iterada

Obs.: Sei resolver a integral iterada em questão encontrando como resposta

, mas confesso que "peno" no esboço da região de integração.
Alguém pode me explicar de maneira detalhada?
Fico aguardando retorno.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por DanielFerreira » Sex Abr 13, 2012 23:51
Cleyson,
costumo resolver daquela forma, veja os intervalos:

e

Agora faça um gráfico para:
y = - x
Faça outra para:
y = x²
Junte os dois...
Nesses casos, é fundamental encontrar os pontos de intersecção.
A propósito, como faço p/ postar esses gráficos?
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por DanielFerreira » Sex Abr 13, 2012 23:52
também achei

"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por MarceloFantini » Sáb Abr 14, 2012 00:08
A equação

define a bissetriz dos quadrantes pares, portanto é uma reta com coeficiente angular -1. A equação

define a parábola com raíz dupla na origem. Os limites de integração significam que estamos calculando a área desde a reta até a parábola, para

no intervalo
![[0,1] [0,1]](/latexrender/pictures/ccfcd347d0bf65dc77afe01a3306a96b.png)
.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Cleyson007 » Sáb Abr 14, 2012 09:31
Bom dia Danjr5/Fantini!
Observando as informações que recebi montei o gráfico com a região de integração. Segue para avaliação:

Danjr, quanto a postagem dos gráficos utilizo o netUpload (
http://www.netupload.org) para hospedar a imagem e copio o link direto que o site me fornece aqui para o fórum. Tenta aí e, se, surgir dúvida me manda uma mensagem, ok?
Aguardo retorno.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por MarceloFantini » Sáb Abr 14, 2012 11:53
Está correta.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Sáb Abr 14, 2012 11:58
danjr5 escreveu: A propósito, como faço p/ postar esses gráficos?
Por favor, vide o tópico:
[Anexos] Envio de anexosviewtopic.php?f=134&t=7460Cleyson007 escreveu:Danjr, quanto a postagem dos gráficos utilizo o netUpload (
http://www.netupload.org) para hospedar a imagem e copio o link direto que o site me fornece aqui para o fórum. Tenta aí e, se, surgir dúvida me manda uma mensagem, ok?
Por favor, evite usar essa estratégia. Tente primeiro anexar o arquivo na sua mensagem (como descrito no tópico indicado acima). Apenas se essa estratégia falhar, daí tente usar essa outra alternativa.
Além disso, eu gostaria de indicar para vocês o programa GeoGebra.
Vide a página oficial desse programa:
http://www.geogebra.org/Se desejar saber como traçar gráficos com o GeoGebra, então basta assistir ao vídeo tutorial "10. Curso de GeoGebra - Funções". Esse vídeo está disponível em meu canal no YouTube:
http://www.youtube.com/LCMAquino
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Cleyson007 » Dom Abr 15, 2012 10:48
Bom dia!
Luiz Aquino, apenas por curiosidade: Por que deve prevalecer o envio da imagem em anexo? Quando a imagem é carregada na própria página do fórum acaba sobrecarregando algo?
Não entendi...
Aguardo retorno.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por MarceloFantini » Dom Abr 15, 2012 15:17
Se estiver anexada ao fórum não corre o risco de se perder. Sites de armazenamento de imagens muitas vezes deletam imagens que são acessadas com pouca frequência como uma forma de liberar espaço, o que não ocorre no fórum.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Cleyson007 » Dom Abr 15, 2012 18:17
Boa tarde Fantini!
Obrigado por esclarecer, das próximas vezes anexarei a imagem ao fórum.
Até mais.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral iterada e Região de integração
por Cleyson007 » Sáb Abr 14, 2012 11:21
- 1 Respostas
- 1203 Exibições
- Última mensagem por LuizAquino

Sáb Abr 14, 2012 12:10
Cálculo: Limites, Derivadas e Integrais
-
- Integral iterada e região de integração
por Cleyson007 » Qua Abr 18, 2012 10:59
- 3 Respostas
- 2179 Exibições
- Última mensagem por LuizAquino

Qui Abr 19, 2012 23:15
Cálculo: Limites, Derivadas e Integrais
-
- [Integral dupla]definir região de integração
por jeferson_justo135 » Qua Jan 14, 2015 21:17
- 8 Respostas
- 5781 Exibições
- Última mensagem por jeferson_justo135

Seg Fev 09, 2015 17:07
Cálculo: Limites, Derivadas e Integrais
-
- Região de integração
por Cleyson007 » Sex Abr 13, 2012 23:00
- 5 Respostas
- 2285 Exibições
- Última mensagem por DanielFerreira

Sáb Abr 14, 2012 00:19
Cálculo: Limites, Derivadas e Integrais
-
- Região de integração
por Cleyson007 » Qua Abr 18, 2012 11:43
- 1 Respostas
- 1295 Exibições
- Última mensagem por LuizAquino

Qui Abr 19, 2012 14:20
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.