• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Retas perpendiculares

Retas perpendiculares

Mensagempor Well » Dom Abr 08, 2012 18:42

Estou com dificuldade em usar este teorema

As retas r : ax + by = c e r': a'x + b'y = c' são perpendiculares se,e somente se aa' + bb' = 0

Gostaria de ver a aplicação desse teorema em um problema,isso me ajudaria a entender.

obrigado.
Well
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mar 28, 2012 21:22
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Retas perpendiculares

Mensagempor fraol » Dom Abr 08, 2012 18:59

Serve um exemplo?

reta r: 2x + y = 3, vetor normal = (2, 1)

reta s: -x + 2y = 2, vetor normal =(-1, 2)

r e s são perpendiculares.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Retas perpendiculares

Mensagempor Well » Dom Abr 08, 2012 19:25

fraol escreveu:Serve um exemplo?

reta r: 2x + y = 3, vetor normal = (2, 1)

reta s: -x + 2y = 2, vetor normal =(-1, 2)

r e s são perpendiculares.


é isso mesmo que eu queria.

Mas se eu tenho a reta r: x + 3y = 1,como faço para achar a reta perpendicular a esta.Usando o teorema que citei.
Well
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mar 28, 2012 21:22
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Retas perpendiculares

Mensagempor fraol » Dom Abr 08, 2012 19:40

Para r: x + 3y = 1 você tem a = 1 e b = 3.

aa' + bb' = 0 \iff b' = -\frac{aa'}{b}

Agora você atribui um valor para a' e acha o b', por exemplo: a' = 2 => b' = -\frac{2}{3}

Assim uma possível reta perpendicular é s: 2x --\frac{2}{3}y = 2.

Esse último 2 é, relativamente, arbitrário - está relacionado com a interseção da reta com o eixo y.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Retas perpendiculares

Mensagempor Well » Dom Abr 08, 2012 20:49

Entendi,muito obrigado!
Well
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mar 28, 2012 21:22
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}