• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Retas perpendiculares

Retas perpendiculares

Mensagempor Well » Dom Abr 08, 2012 18:42

Estou com dificuldade em usar este teorema

As retas r : ax + by = c e r': a'x + b'y = c' são perpendiculares se,e somente se aa' + bb' = 0

Gostaria de ver a aplicação desse teorema em um problema,isso me ajudaria a entender.

obrigado.
Well
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mar 28, 2012 21:22
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Retas perpendiculares

Mensagempor fraol » Dom Abr 08, 2012 18:59

Serve um exemplo?

reta r: 2x + y = 3, vetor normal = (2, 1)

reta s: -x + 2y = 2, vetor normal =(-1, 2)

r e s são perpendiculares.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Retas perpendiculares

Mensagempor Well » Dom Abr 08, 2012 19:25

fraol escreveu:Serve um exemplo?

reta r: 2x + y = 3, vetor normal = (2, 1)

reta s: -x + 2y = 2, vetor normal =(-1, 2)

r e s são perpendiculares.


é isso mesmo que eu queria.

Mas se eu tenho a reta r: x + 3y = 1,como faço para achar a reta perpendicular a esta.Usando o teorema que citei.
Well
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mar 28, 2012 21:22
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Retas perpendiculares

Mensagempor fraol » Dom Abr 08, 2012 19:40

Para r: x + 3y = 1 você tem a = 1 e b = 3.

aa' + bb' = 0 \iff b' = -\frac{aa'}{b}

Agora você atribui um valor para a' e acha o b', por exemplo: a' = 2 => b' = -\frac{2}{3}

Assim uma possível reta perpendicular é s: 2x --\frac{2}{3}y = 2.

Esse último 2 é, relativamente, arbitrário - está relacionado com a interseção da reta com o eixo y.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Retas perpendiculares

Mensagempor Well » Dom Abr 08, 2012 20:49

Entendi,muito obrigado!
Well
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mar 28, 2012 21:22
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.