• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Função exponencial] com expressão

[Função exponencial] com expressão

Mensagempor paola-carneiro » Sex Abr 06, 2012 16:40

A questão é essa:
(Faap-SP) Resolva em IR: {5}^{10x} - 10.{5}^{5x}-5 = -30

Sei que em função exponencial temos que igualar a base, e depois retirá-lo e resolver os expoentes. Mas nessa expressão, se fatorarmos o 5 e o 10, fica {5}^{1.2} e  {5}^{1.6}, se não me engano. E no caso a expressão fica:

{5}^{10x} - {5}^{1.2}.{5}^{5x}-5 = -{5}^{1.6}
e a partir dai, não sei como resolver a expressão.
ajuuuda?!
paola-carneiro
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qui Abr 05, 2012 15:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Função exponencial] com expressão

Mensagempor MarceloFantini » Sex Abr 06, 2012 19:09

Não, isto não está correto. Não existe igualar bases, veja que em 2^x = 7^x não há sentido em "igualar as bases". O que você diz é sim quando temos exponenciais de mesma base, não que igualamos. Neste caso, para que sejam iguais, deve-se ocorrer que os expoentes são os mesmos devido ao fato que a função exponencial é injetora.

Esta questão é uma das tradicionais mudanças de variável. É importante lembrar a propriedade fundamental da função exponencial de que ela nunca se anula, ou seja, a^x \neq 0 SEMPRE, para todo a>0. Perceba que 5^{10x} = (5^{5x})^2. Então faça t=5^{5x}. A equação toma a forma

5^{10x} - 10 \cdot 5^{5x} -5 = -30 \implies (5^{5x})^2 - 10 \cdot (5^{5x}) -5 = -30 \implies

\implies (t)^2 -10 \cdot t -5 = -30.

Temos agora uma equação do segundo grau em t. Tente prosseguir e mostre seus passos.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Função exponencial] com expressão

Mensagempor paola-carneiro » Sáb Abr 07, 2012 15:40

Resolvendo a equação, o delta eu encontrei zero. E o x ficaria 5.
Porém, a resposta final do livro é \frac{1}{5}
Estou fazendo algo errado?
paola-carneiro
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qui Abr 05, 2012 15:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Função exponencial] com expressão

Mensagempor MarceloFantini » Sáb Abr 07, 2012 17:30

Você encontra que t = 5, certo? Mas lá no começo dissemos que t = 5^{5x}, daí 5^{5x} = 5 e 5x=1, logo x = \frac{1}{5}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Função exponencial] com expressão

Mensagempor paola-carneiro » Sáb Abr 07, 2012 17:32

Entendi! obrigada :D
paola-carneiro
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qui Abr 05, 2012 15:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.