por paola-carneiro » Sex Abr 06, 2012 16:40
A questão é essa:
(Faap-SP) Resolva em IR:

Sei que em função exponencial temos que igualar a base, e depois retirá-lo e resolver os expoentes. Mas nessa expressão, se fatorarmos o 5 e o 10, fica

, se não me engano. E no caso a expressão fica:

e a partir dai, não sei como resolver a expressão.
ajuuuda?!
-
paola-carneiro
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qui Abr 05, 2012 15:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por MarceloFantini » Sex Abr 06, 2012 19:09
Não, isto não está correto. Não existe igualar bases, veja que em

não há sentido em "igualar as bases". O que você diz é sim quando temos exponenciais de
mesma base, não que igualamos. Neste caso, para que sejam iguais, deve-se ocorrer que os expoentes são os mesmos devido ao fato que a função exponencial é injetora.
Esta questão é uma das tradicionais mudanças de variável. É importante lembrar a propriedade fundamental da função exponencial de que ela
nunca se anula, ou seja,
SEMPRE, para todo

. Perceba que

. Então faça

. A equação toma a forma


.
Temos agora uma equação do segundo grau em t. Tente prosseguir e mostre seus passos.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por paola-carneiro » Sáb Abr 07, 2012 15:40
Resolvendo a equação, o delta eu encontrei zero. E o x ficaria 5.
Porém, a resposta final do livro é

Estou fazendo algo errado?
-
paola-carneiro
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qui Abr 05, 2012 15:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por MarceloFantini » Sáb Abr 07, 2012 17:30
Você encontra que

, certo? Mas lá no começo dissemos que

, daí

e

, logo

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por paola-carneiro » Sáb Abr 07, 2012 17:32
Entendi! obrigada

-
paola-carneiro
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qui Abr 05, 2012 15:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Função exponencial expressão:f(x)=b
por victorino29 » Sex Mai 29, 2020 10:28
- 3 Respostas
- 6590 Exibições
- Última mensagem por Cleyson007

Sáb Jun 27, 2020 20:47
Funções
-
- [Função exponencial] Exercício sobre função exponencial
por fff » Ter Jan 07, 2014 17:51
- 3 Respostas
- 3808 Exibições
- Última mensagem por fff

Qua Jan 08, 2014 06:47
Funções
-
- [Desigualdade] entre função exponencial e função potência
por VitorFN » Sex Mai 26, 2017 15:18
- 1 Respostas
- 5314 Exibições
- Última mensagem por adauto martins

Sex Jul 07, 2017 12:17
Álgebra Elementar
-
- Expressão em função de x
por Andreza » Qui Jan 26, 2012 12:04
- 3 Respostas
- 1601 Exibições
- Última mensagem por LuizAquino

Qui Jan 26, 2012 14:09
Funções
-
- Função do 2° grau - o menor valor numa expressão
por PeterHiggs » Sex Mai 25, 2012 22:24
- 1 Respostas
- 2228 Exibições
- Última mensagem por PeterHiggs

Sáb Mai 26, 2012 16:09
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.