• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida num limite pela definição

Duvida num limite pela definição

Mensagempor TheoFerraz » Qua Abr 13, 2011 19:52

Olá!
Gente, eu entrei na 4ª lista da Universidade entao perdi muita materia, agora to com dificuldade... To começando a pegar o jeito, mas esse problema eu não consigo!
O problema é o seguinte

Prove pela definição formal de limites o seguinte limite:

\lim_{x\rightarrow1}\left(x + \frac{1}{{x}^{2}} \right) = 2

Bom... eu consegui pensar em diversas coisas mas nenhuma delas ajuda, e nenhuma delas é certeza de que são pensamentos corretos.

Eu pensei na propriedade de que se f(x) e g(x) são contínuas, eu sei que f(x)+g(x) é uma função continua. entao posso separar em dois limites que eu tenho que provar.

Teria que provar que \lim_{x\rightarrow1}x = 1 e Depois teria que provar que \lim_{x\rightarrow1}\left(\frac{1}{{x}^{2}} \right) = 1

Certo. O primeiro é facil. não precisa de nada. Agora o segundo é Complicado. não consigo fazer nada... =/
Se eu tento criar um \epsilon pra tentar exibir um \delta eu simplesmente não consigo.

Obrigado pela atenção
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Duvida num limite pela definição

Mensagempor LuizAquino » Qui Abr 14, 2011 00:49

TheoFerraz escreveu:Prove pela definição formal de limites o seguinte limite:

\lim_{x\rightarrow1}\left(x + \frac{1}{{x}^{2}} \right) = 2


Aplicando a definição formal de limites, temos que provar que:

Para todo \varepsilon > 0 existe um \delta > 0 tal que \left|x+\frac{1}{x^2} - 2\right| < \varepsilon sempre que |x-1| < \delta.

Comece observando que
x+\frac{1}{x^2}-2 = \frac{x^3-2x^2+1}{x^2} = \frac{(x-1)(x^2-x-1)}{x^2}

Desse modo, temos que
|x-1|\left|\frac{x^2-x-1}{x^2}\right| < \varepsilon

Precisamos delimitar o termo \left|\frac{x^2-x-1}{x^2}\right|, ou seja, determinar uma constante c tal que \left|\frac{x^2-x-1}{x^2}\right|< c.

Como x está próximo de 1, é razoável, por exemplo, delimitarmos que |x-1| < 1/2. Disso, nós obtemos que -1/2 < x-1 < 1/2, ou ainda, 1/2 < x < 3/2. Note que nesse caso nós estipulamos que \delta_1 = \frac{1}{2}.

Analisando o gráfico das funções f(x)=|x^2-x-1| e g(x) = |x^2| para 1/2 < x < 3/2, temos que \left|\frac{x^2-x-1}{x^2}\right| < 5

Desse modo, temos que |x-1| < \frac{\varepsilon}{5}. Nesse caso, bastava tomar \delta_2 = \frac{\varepsilon}{5}.

Por fim, para garantir que \left|x+\frac{1}{x^2} - 2\right| < \varepsilon, devemos tomar \delta como sendo o menor entre os valores \{\delta_1,\, \delta_2\}. Isto é, devemos tomar \delta=\min \{\delta_1,\, \delta_2\}.

Sugestões
Acredito que os seguintes tópicos possam lhe interessar:

Demonstração de limites
viewtopic.php?f=120&t=4149

Curso de Cálculo I no YouTube
viewtopic.php?f=137&t=4280
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Duvida num limite pela definição

Mensagempor TheoFerraz » Seg Abr 18, 2011 17:39

Luiz, voce pode me informar em qual dos seus videos tem alguma demonstração dessa tecnica com o \delta min ?
Sua resposta ja ajudou muito! Mas o conceito ainda é muito abstrato.
De qualquer forma.
Muitissimo obrigado pela resposta, ajudou um bocado!
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Duvida num limite pela definição

Mensagempor LuizAquino » Seg Abr 18, 2011 19:32

Olá TheoFerraz,

Em nenhum dos vídeos tem um exercício como esse.

Na maioria dos livros de Cálculo você pode encontrar exercícios assim. Por exemplo, procure no livro de Cálculo de James Stewart, na seção que fala sobre a definição precisa do conceito de limite.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Duvida num limite pela definição

Mensagempor Kabection » Qui Mar 29, 2012 21:45

Luiz Aquino, não entendi como vc chegou nessa parte

Analisando o gráfico das funções f(x)=|x^2-x-1| e g(x) = |x^2| para 1/2 < x < 3/2, temos que \left|\frac{x^2-x-1}{x^2}\right| < 5
Poderia me explicar sobre esse < 5 pelo gráfico das funções, Agradeço a colaboração.
Kabection
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Jan 16, 2012 15:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Duvida num limite pela definição

Mensagempor LuizAquino » Sex Mar 30, 2012 00:52

Kabection escreveu:Luiz Aquino, não entendi como vc chegou nessa parte

Analisando o gráfico das funções f(x)=|x^2-x-1| e g(x) = |x^2| para 1/2 < x < 3/2, temos que \left|\frac{x^2-x-1}{x^2}\right| < 5
Poderia me explicar sobre esse < 5 pelo gráfico das funções, Agradeço a colaboração.


Analise os gráficos abaixo.

figura.png
figura.png (9.62 KiB) Exibido 3517 vezes


Note que para 1/2 < x < 3/2, temos que:

\dfrac{1}{4} < \left|x^2 - x - 1\right| < \dfrac{5}{4}

\dfrac{1}{4} < \left|x^2\right| < \dfrac{9}{4}

Agora, lembre-se da seguinte propriedade das inequações.

Se 0 < a < b e 0 < c < d, então \frac{a}{d} < \frac{b}{c} .

Desse modo, se \left|x^2 - x - 1\right| < \frac{5}{4} e \frac{1}{4} < \left|x^2\right| , então temos que:

\dfrac{\left|x^2 - x - 1\right|}{\left|x^2\right|} < \dfrac{\frac{5}{4}}{\frac{1}{4}}

\left|\dfrac{x^2 - x - 1}{x^2}\right| < 5
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?