• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Círculo trigonométrico

Círculo trigonométrico

Mensagempor Ananda » Sex Fev 29, 2008 10:56

Bom dia!
O exercício é o seguinte:

Marcando no círculo trigonométrico as extremidades dos arcos da forma k.{50}^{0}, k inteiro, obtemos os vértices de um polígono regular cujo número de lados é igual a:

Resposta: 36

Dúvidas:
Meu problema inicial é que não entendi direito o enunciado, k.{50}^{0} é o comprimento do arco?
Sei que os lados e os ângulos são congruentes e que
ai=Si.n

ai=(n-2).{180}^{0}.n

O diâmetro do círculo é a diagonal do polígono?
K seria o raio e {50}^{0} o \alpha?

Grata desde já!
Ananda
Ananda
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 55
Registrado em: Sex Fev 22, 2008 19:37
Área/Curso: Estudante
Andamento: cursando

Re: Círculo trigonométrico

Mensagempor admin » Sex Fev 29, 2008 16:38

Olá Ananda!

Você pode pensar no significado de k \cdot 50^\circ assim:
Marcando o círculo trigonométrico, de 50^\circ em 50^\circ no mesmo sentido, após k marcações, teremos um polígono regular de k lados.

O caminho é descobrir o ângulo central deste polígono.
Para isso, como k é inteiro, calculamos o resto da divisão de 360^\circ por 50^\circ, partindo daqui:

k50^\circ = 360^\circ

\begin{tabular}{ll}
   360 & \vline 50 \\ \hline
   10 & 7 
\end{tabular}

Ou seja, ao darmos uma volta no círculo trigonométrico, marcamos 7 pontos e sobram 10^\circ.
Esta sobra é o ângulo central A_o.
Mas, o ângulo central é igual ao ângulo externo A_e do polígono:
A_o = A_e = 10^\circ

E como os ângulos externos de um polígono regular de k lados têm medidas iguais, sua soma S_e é (I):
S_e = k \cdot A_e

E ainda (II):
S_e = 360^\circ

De (I) e (II):

k \cdot A_e = 360^\circ

A_e = \frac{360^\circ}{k}

10^\circ = \frac{360^\circ}{k}

k = \frac{360^\circ}{10^\circ}

k = 36


Espero ter ajudado.
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: Círculo trigonométrico

Mensagempor Ananda » Sex Fev 29, 2008 16:56

Olá!
Grata! Ajudaste sim...
E reparando nas minhas dúvidas, vejo que meu maior problema é desconhecimento de conceitos importantes!
Uma boa tarde para ti!
Ananda
Ananda
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 55
Registrado em: Sex Fev 22, 2008 19:37
Área/Curso: Estudante
Andamento: cursando

Re: Círculo trigonométrico

Mensagempor admin » Sex Fev 29, 2008 17:09

Na figura colocada anteriormente, O não é o ângulo central.
Precisamos ter uma circunferência relacionada.

Ângulo central de uma circunferência é um ângulo cujo vértice é o centro da circunferência.
Segue uma figura como exemplo, onde o ângulo AOB é um ângulo central da circunferência \lambda de centro O.
angulo_central.jpg
angulo_central.jpg (13.56 KiB) Exibido 8525 vezes


No caso de um polígono regular, seus vértices determinarão os arcos correspondentes do ângulo central.

Boa tarde!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: Círculo trigonométrico

Mensagempor Ananda » Sex Fev 29, 2008 17:11

Olá!
Eu percebi isso depois, por isso que tirei a imagem...
Grata mais uma vez!
Ananda
Ananda
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 55
Registrado em: Sex Fev 22, 2008 19:37
Área/Curso: Estudante
Andamento: cursando

Re: Círculo trigonométrico

Mensagempor admin » Sex Fev 29, 2008 21:00

Olá Ananda!

Além de fazer pela soma dos ângulos externos, outra alternativa é considerar os ângulos internos.

Sendo:

A_o: ângulo central
A_e: ângulo externo
A_i: ângulo interno

Já havíamos visto que:

A_o = A_e = 10^\circ

E como:

A_e + A_i = 180^\circ

Segue que:

A_i = 180^\circ - 10^\circ = 170^\circ


E utilizando:

A_i = \frac{(k-2) \cdot 180^\circ}{k}

170k = (k-2) \cdot 180

17k = 18k-36

18k - 17k = 36

k = 36


Bom final de semana!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: Círculo trigonométrico

Mensagempor Ananda » Sáb Mar 01, 2008 19:54

Olá!
Grata, Fábio!
Ah, eu resolvi fazer um círculo trigonométrico e uma tabela, vou anexar, tudo bem?
Daí caso alguém queira, é só baixar...
Até mais!
E bom final de semana!
Anexos

[O anexo não pode ser exibido, pois a extensão doc foi desativada pelo administrador.]

Editado pela última vez por Ananda em Qui Mar 06, 2008 18:53, em um total de 3 vezes.
Ananda
Ananda
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 55
Registrado em: Sex Fev 22, 2008 19:37
Área/Curso: Estudante
Andamento: cursando

Re: Círculo trigonométrico

Mensagempor admin » Sáb Mar 01, 2008 21:08

Olá Ananda!
OK, obrigado por compartilhar.

Até mais!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: Círculo trigonométrico

Mensagempor Ananda » Seg Mar 03, 2008 17:51

Boa tarde!
Anexei novamente o arquivo, pois hoje vi que estava com um erro.
No círculo, os valores do cosseno estavam trocados, \frac{\sqrt[]{3}}{2} com 0,5 (tanto positivo quando negativo). Já arrumei. Caso alguém tenha baixado, é só baixar o novo arquivo que está corrigido.
Até mais!
Ananda
Ananda
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 55
Registrado em: Sex Fev 22, 2008 19:37
Área/Curso: Estudante
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D