por renanrdaros » Ter Mar 20, 2012 16:32
Um foguete acelera pela queima do combustível a bordo; assim, sua massa diminui com o tempo. Suponha que a massa inicial do foguete no lançamento (incluindo o combustível) seja
m, que o combustível seja consumido a uma taxa
r, e que os gases de exaustão sejam ejetados a uma velocidade constante

(relativa ao foguete). Um modelo para a velocidade do foguete a um tempo
t é dado pela seguinte equação:

onde
g é a aceleração da gravidade, e
t não é muito grande. Se
g = 9.8 m/s²,
m = 30000 kg,
r = 160 kg/s e

= 3000 m/s, ache a altitude do foguete 1 minuto após o lançamento.
![= -4.9{t}^{2} + 1500\left[\left(375 - 2t \right)ln\left(\frac{375 - 2t}{375} \right)-\left(375 - 2t \right) \right] + c = -4.9{t}^{2} + 1500\left[\left(375 - 2t \right)ln\left(\frac{375 - 2t}{375} \right)-\left(375 - 2t \right) \right] + c](/latexrender/pictures/d1e31d5888de4c25fbcad3e501533bc7.png)
Resolvendo a integral indefinida cheguei no resultado acima, mas ao aplicar os limites de integração o resultado final dá sempre negativo.
Editado pela última vez por
renanrdaros em Qua Mar 21, 2012 01:33, em um total de 3 vezes.
-
renanrdaros
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Sáb Mar 19, 2011 19:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Computação
- Andamento: cursando
por LuizAquino » Ter Mar 20, 2012 20:51
renanrdaros escreveu:Um foguete acelera pela queima do combustível a bordo; assim, sua massa diminui com o tempo. Suponha que a massa inicial do foguete no lançamento (incluindo o combustível) seja
m, que o combustível seja consumido a uma taxa
r, e que os gases de exaustão sejam ejetados a uma velocidade constante

(relativa ao foguete). Um modelo para a velocidade do foguete a um tempo
t é dado pela seguinte equação:

onde
g é a aceleração da gravidade, e
t não é muito grande. Se
g = 9.8 m/s²,
m = 30000 kg,
r = 160 kg/s e

= 3000 m/s, ache a altitude do foguete 1 minuto após o lançamento.
renanrdaros escreveu:
![= -4.9{t}^{2} + 1500\left[\left(375 - 2t \right)ln\left(\frac{375 - 2t}{375} \right)-\left(375 - 2t \right) \right] + c = -4.9{t}^{2} + 1500\left[\left(375 - 2t \right)ln\left(\frac{375 - 2t}{375} \right)-\left(375 - 2t \right) \right] + c](/latexrender/pictures/d1e31d5888de4c25fbcad3e501533bc7.png)
Resolvendo a integral indefinida cheguei no resultado acima, mas ao aplicar os limites de integração o resultado final dá sempre negativo.
1) Note que r = 160 kg/s, mas você substituiu por 2. Reveja os cálculos da integral indefinida.
2) Qual é o intervalo de integração que você está aplicando? Você está tomando o cuidado de colocar o intervalo de integração em segundos?
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por renanrdaros » Qua Mar 21, 2012 01:43
LuizAquino escreveu:1) Note que r = 160 kg/s, mas você substituiu por 2. Reveja os cálculos da integral indefinida.
2) Qual é o intervalo de integração que você está aplicando? Você está tomando o cuidado de colocar o intervalo de integração em segundos?
1 - Já editei. Os cálculos estavam certos; eu errei ao digitar aqui no fórum. Na verdade eu fatorei e simplifiquei o logaritmando.
2 - Estou usando o intervalo [0; 60s].
-
renanrdaros
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Sáb Mar 19, 2011 19:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Computação
- Andamento: cursando
por nietzsche » Qua Mar 21, 2012 02:05
Analisando a integral, não precisa usar integração por partes. Uma mudança de váriavel é suficiente. Lembrando que essa integral pode ser separada na soma de duas e "chamando" o argumento do logaritmo de uma nova variável u(t), vai facilitar.
Um site pra testar se suas contas estão certas é:
http://www.wolframalpha.com/Ele calcula integrais.
-
nietzsche
- Usuário Parceiro

-
- Mensagens: 99
- Registrado em: Qua Jan 12, 2011 14:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por renanrdaros » Qua Mar 21, 2012 09:17
nietzsche,
Eu já havia comparado o meu resultado com o resultado obtido pelo wolfram alpha. A integração está correta, o problema é que, ao aplicar os limites, não chego ao resultado esperado.
-
renanrdaros
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Sáb Mar 19, 2011 19:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Computação
- Andamento: cursando
por LuizAquino » Qua Mar 21, 2012 12:10
renanrdaros escreveu:Eu já havia comparado o meu resultado com o resultado obtido pelo wolfram alpha. A integração está correta, o problema é que, ao aplicar os limites, não chego ao resultado esperado.
Qual o valor que você está chegando?
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por renanrdaros » Qua Mar 21, 2012 13:10

Refiz os cálculos e consegui chegar ao resultado correto!
Obrigado pela ajuda!
-
renanrdaros
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Sáb Mar 19, 2011 19:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Computação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Função - não consigo chegar ao resultado
por vivianyx3 » Sex Mai 03, 2013 23:20
- 3 Respostas
- 2448 Exibições
- Última mensagem por R0nny

Seg Mai 06, 2013 16:55
Funções
-
- [FATORAÇÃO] como chegar no resultado final
por carolinaln » Seg Mai 08, 2017 20:46
- 1 Respostas
- 1817 Exibições
- Última mensagem por DanielFerreira

Dom Mai 14, 2017 00:51
Equações
-
- Só consigo chegar a 24 dias exatos.
por Evaldo » Qua Out 14, 2009 13:19
- 1 Respostas
- 1761 Exibições
- Última mensagem por Lucio Carvalho

Qua Out 14, 2009 18:52
Pedidos
-
- [Integração por Partes] Constante de integração
por KleinIll » Dom Set 01, 2019 14:11
- 2 Respostas
- 5713 Exibições
- Última mensagem por KleinIll

Sex Set 06, 2019 18:39
Cálculo: Limites, Derivadas e Integrais
-
- FUNÇÃO NÃO CONSIGO CHEGAR À RESPOSTA CERTA
por DIEGO ALVES LOPES » Sáb Abr 11, 2009 01:53
- 1 Respostas
- 2574 Exibições
- Última mensagem por Molina

Sáb Abr 11, 2009 04:26
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.