por dina ribeiro » Sex Mar 16, 2012 18:39
Boa tarde!
Gostaria de saber onde errei na resolução da integral abaixo:

fazendo por substituição (u=-5s , du=-5ds , ds=-du/5)

fazendo por partes

onde k=s , dk=1
v=e^u , dv=e^u du


grata
-
dina ribeiro
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Qui Mar 15, 2012 19:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por LuizAquino » Sex Mar 16, 2012 19:28
dina ribeiro escreveu:Gostaria de saber onde errei na resolução da integral abaixo:

fazendo por substituição (u=-5s , du=-5ds , ds=-du/5)

Você errou essa substituição. O correto seria:

Note que na sua resolução, a variável s continuou aparecendo na integral após a substituição. Isso não pode acontecer. Afinal de contas, você desejava substituir a variável da integral que era s por uma outra variável (no caso u).
Agora continue a resolução a partir daí.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por dina ribeiro » Sáb Mar 17, 2012 00:14
Mas u=-5s ou u=s ??????
Se fosse igual a s , ficaria assim:

Não entendi!
-
dina ribeiro
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Qui Mar 15, 2012 19:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por MarceloFantini » Sáb Mar 17, 2012 01:19
A substituição que ele fez é

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por dina ribeiro » Sáb Mar 17, 2012 11:37
simmmm, então pq ele disse que tenho que substituir o s por u, se u=-5s????

Se u=-5s, então

Onde está o erro????
-
dina ribeiro
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Qui Mar 15, 2012 19:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por MarceloFantini » Sáb Mar 17, 2012 13:02
Porque quando integramos queremos ter apenas a variável dentro da integral. Não faz sentido usar uma substituição e manter a variável original.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Sáb Mar 17, 2012 22:41
dina ribeiro escreveu:Mas u=-5s ou u=s ??????
Se fosse igual a s , ficaria assim:

Não entendi!
dina ribeiro escreveu:simmmm, então pq ele disse que tenho que substituir o s por u, se u=-5s????

Se u=-5s, então

Onde está o erro????
Você interpretou errado o que eu disse.
Eu não disse que você deveria fazer s = u.
O que eu disse foi: "
Note que na sua resolução, a variável s continuou aparecendo na integral após a substituição. Isso não pode acontecer. Afinal de contas, você desejava substituir a variável da integral que era s por uma outra variável (no caso u)".
No método da substituição, nós devemos "substituir" ou "trocar" a variável original da integral por uma outra variável.
Vamos supor que a variável original da integral fosse s. Dizer que vamos "substituir" (ou "trocar") a variável original da integral por u, não significa dizer que vamos fazer s = u. Significa apenas que a integral passará da forma

para a forma

.
Voltando ao exercício, a integral estava no formato:

Nesse caso, podemos dizer que

e que portanto a integral tem o formato:

Desejamos agora fazer uma substituição (uma troca) de variável de modo que o novo formato será:

Fazendo então u = -5s (o que é o mesmo que dizer que s = -u/5), temos que a integral original será reescrita como:

Nesse caso, temos que

.
O seu erro está no fato de que após a sua substituição o integrando continuou dependendo da variável s. Isto é, não temos apenas uma função do tipo g(u).
Eis o que você escreveu:
dina ribeiro escreveu:
Note que no integrando a variável s continuou aparecendo. Isso não pode acontecer quando usamos a técnica de substituição.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por dina ribeiro » Dom Mar 18, 2012 15:15
Ahhhhh entendi... não tinha conseguido visualizar isso!
Obrigada!!
-
dina ribeiro
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Qui Mar 15, 2012 19:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral - onde errei?
por dina ribeiro » Sex Mar 23, 2012 21:03
- 1 Respostas
- 975 Exibições
- Última mensagem por MarceloFantini

Sex Mar 23, 2012 21:10
Cálculo: Limites, Derivadas e Integrais
-
- Onde foi que eu errei
por Gabriel Doria » Sex Mar 23, 2012 00:03
- 2 Respostas
- 1505 Exibições
- Última mensagem por MarceloFantini

Sex Mar 23, 2012 08:16
Cálculo: Limites, Derivadas e Integrais
-
- FATORIAL (ONDE EU ERREI?)
por natanskt » Qui Dez 02, 2010 17:33
- 3 Respostas
- 1790 Exibições
- Última mensagem por alexandre32100

Sex Dez 03, 2010 14:24
Binômio de Newton
-
- [Integral por partes] onde está o erro???
por Fabio Wanderley » Seg Mai 28, 2012 20:21
- 2 Respostas
- 2320 Exibições
- Última mensagem por Fabio Wanderley

Ter Mai 29, 2012 13:42
Cálculo: Limites, Derivadas e Integrais
-
- [Integral Definida] Ex. do tipo "onde está o erro?"
por Fabio Wanderley » Seg Out 22, 2012 23:15
- 2 Respostas
- 2685 Exibições
- Última mensagem por Fabio Wanderley

Ter Out 23, 2012 00:24
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.